Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import joblib # Replace with torch if using a PyTorch model
|
| 3 |
+
|
| 4 |
+
# Load the trained model (ensure the model file is in the same directory)
|
| 5 |
+
model = joblib.load('path_to_your_model.pkl')
|
| 6 |
+
|
| 7 |
+
# Streamlit UI
|
| 8 |
+
st.title("Sentiment Analysis App using GenAI Models")
|
| 9 |
+
|
| 10 |
+
# Text input from the user
|
| 11 |
+
user_input = st.text_area("Enter text to analyze sentiment:", "")
|
| 12 |
+
|
| 13 |
+
# Prediction button
|
| 14 |
+
if st.button("Analyze"):
|
| 15 |
+
if user_input:
|
| 16 |
+
# Perform prediction
|
| 17 |
+
prediction = model.predict([user_input])
|
| 18 |
+
sentiment = "Positive" if prediction[0] == 1 else "Negative"
|
| 19 |
+
st.write(f"**Predicted Sentiment:** {sentiment}")
|
| 20 |
+
else:
|
| 21 |
+
st.warning("Please enter some text to analyze.")
|
| 22 |
+
|
| 23 |
+
# Optional: Footer
|
| 24 |
+
st.write("---")
|
| 25 |
+
st.caption("Built with Streamlit and GenAI models.")
|