Madiharehan commited on
Commit
8139db3
·
verified ·
1 Parent(s): dbf98a0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -15
app.py CHANGED
@@ -1,33 +1,25 @@
1
  import streamlit as st
2
- from transformers import pipeline
3
 
4
- # Load the sentiment analysis model from Hugging Face
5
- @st.cache_resource # Cache the model for faster loading
6
- def load_model():
7
- return pipeline('sentiment-analysis', model='cardiffnlp/twitter-roberta-base-sentiment')
8
-
9
- model = load_model()
10
 
11
  # Streamlit UI
12
  st.title("Sentiment Analysis App using GenAI Models")
13
 
14
  # Text input from the user
15
- user_input = st.text_area("Enter text to analyze sentiment:")
16
 
17
  # Prediction button
18
  if st.button("Analyze"):
19
  if user_input:
20
  # Perform prediction
21
- result = model(user_input) # Hugging Face pipeline returns a dictionary
22
- sentiment = result[0]['label'] # Get sentiment label (Positive/Negative/Neutral)
23
- confidence = result[0]['score'] # Confidence score
24
-
25
- # Display the sentiment and confidence score
26
  st.write(f"**Predicted Sentiment:** {sentiment}")
27
- st.write(f"**Confidence Score:** {confidence:.2f}")
28
  else:
29
  st.warning("Please enter some text to analyze.")
30
 
31
  # Optional: Footer
32
  st.write("---")
33
- st.caption("Built with Streamlit and Hugging Face's GenAI models.")
 
1
  import streamlit as st
2
+ import joblib # Replace with torch if using a PyTorch model
3
 
4
+ # Load the trained model (ensure the model file is in the same directory)
5
+ model = joblib.load('path_to_your_model.pkl')
 
 
 
 
6
 
7
  # Streamlit UI
8
  st.title("Sentiment Analysis App using GenAI Models")
9
 
10
  # Text input from the user
11
+ user_input = st.text_area("Enter text to analyze sentiment:", "")
12
 
13
  # Prediction button
14
  if st.button("Analyze"):
15
  if user_input:
16
  # Perform prediction
17
+ prediction = model.predict([user_input])
18
+ sentiment = "Positive" if prediction[0] == 1 else "Negative"
 
 
 
19
  st.write(f"**Predicted Sentiment:** {sentiment}")
 
20
  else:
21
  st.warning("Please enter some text to analyze.")
22
 
23
  # Optional: Footer
24
  st.write("---")
25
+ st.caption("Built with Streamlit and GenAI models.")