Madiharehan
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,31 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
|
4 |
-
# Load
|
5 |
-
|
|
|
6 |
|
7 |
-
# Streamlit UI
|
8 |
st.title("Sentiment Analysis App using GenAI Models")
|
9 |
|
10 |
# Text input from the user
|
11 |
-
user_input = st.text_area("Enter text to analyze sentiment:"
|
12 |
|
13 |
# Prediction button
|
14 |
if st.button("Analyze"):
|
15 |
if user_input:
|
16 |
-
#
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
st.write(f"**Predicted Sentiment:** {sentiment}")
|
20 |
else:
|
21 |
st.warning("Please enter some text to analyze.")
|
22 |
-
|
23 |
-
# Optional: Footer
|
24 |
-
st.write("---")
|
25 |
-
st.caption("Built with Streamlit and GenAI models.")
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
2 |
import streamlit as st
|
3 |
+
import torch
|
4 |
|
5 |
+
# Load tokenizer and model from Hugging Face Hub
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
7 |
+
model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
8 |
|
9 |
+
# Streamlit UI setup
|
10 |
st.title("Sentiment Analysis App using GenAI Models")
|
11 |
|
12 |
# Text input from the user
|
13 |
+
user_input = st.text_area("Enter text to analyze sentiment:")
|
14 |
|
15 |
# Prediction button
|
16 |
if st.button("Analyze"):
|
17 |
if user_input:
|
18 |
+
# Tokenize the user input
|
19 |
+
inputs = tokenizer(user_input, return_tensors="pt")
|
20 |
+
|
21 |
+
# Perform inference
|
22 |
+
with torch.no_grad():
|
23 |
+
outputs = model(**inputs)
|
24 |
+
|
25 |
+
# Interpret the results
|
26 |
+
predicted_class = torch.argmax(outputs.logits, dim=1).item()
|
27 |
+
sentiment = ["Negative", "Neutral", "Positive"][predicted_class] # Assuming 3 classes
|
28 |
+
|
29 |
st.write(f"**Predicted Sentiment:** {sentiment}")
|
30 |
else:
|
31 |
st.warning("Please enter some text to analyze.")
|
|
|
|
|
|
|
|