Madiharehan commited on
Commit
a4afdf5
·
verified ·
1 Parent(s): 7c8563e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -12
app.py CHANGED
@@ -1,25 +1,31 @@
 
1
  import streamlit as st
2
- import joblib # Replace with torch if using a PyTorch model
3
 
4
- # Load the trained model (ensure the model file is in the same directory)
5
- model = joblib.load('path_to_your_model.pkl')
 
6
 
7
- # Streamlit UI
8
  st.title("Sentiment Analysis App using GenAI Models")
9
 
10
  # Text input from the user
11
- user_input = st.text_area("Enter text to analyze sentiment:", "")
12
 
13
  # Prediction button
14
  if st.button("Analyze"):
15
  if user_input:
16
- # Perform prediction
17
- prediction = model.predict([user_input])
18
- sentiment = "Positive" if prediction[0] == 1 else "Negative"
 
 
 
 
 
 
 
 
19
  st.write(f"**Predicted Sentiment:** {sentiment}")
20
  else:
21
  st.warning("Please enter some text to analyze.")
22
-
23
- # Optional: Footer
24
- st.write("---")
25
- st.caption("Built with Streamlit and GenAI models.")
 
1
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
2
  import streamlit as st
3
+ import torch
4
 
5
+ # Load tokenizer and model from Hugging Face Hub
6
+ tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
7
+ model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
8
 
9
+ # Streamlit UI setup
10
  st.title("Sentiment Analysis App using GenAI Models")
11
 
12
  # Text input from the user
13
+ user_input = st.text_area("Enter text to analyze sentiment:")
14
 
15
  # Prediction button
16
  if st.button("Analyze"):
17
  if user_input:
18
+ # Tokenize the user input
19
+ inputs = tokenizer(user_input, return_tensors="pt")
20
+
21
+ # Perform inference
22
+ with torch.no_grad():
23
+ outputs = model(**inputs)
24
+
25
+ # Interpret the results
26
+ predicted_class = torch.argmax(outputs.logits, dim=1).item()
27
+ sentiment = ["Negative", "Neutral", "Positive"][predicted_class] # Assuming 3 classes
28
+
29
  st.write(f"**Predicted Sentiment:** {sentiment}")
30
  else:
31
  st.warning("Please enter some text to analyze.")