File size: 1,965 Bytes
01c3c58 025ebfe 01c3c58 025ebfe 01c3c58 025ebfe 01c3c58 025ebfe 01c3c58 5f100b2 025ebfe 5f100b2 025ebfe 5f100b2 025ebfe 5f100b2 025ebfe 5f100b2 025ebfe 01c3c58 025ebfe 01c3c58 025ebfe 01c3c58 025ebfe 01c3c58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import gradio as gr
from transformers import pipeline
# Load the pre-trained model (using the trained model you provided)
def load_model():
# Use your trained model here; if it's hosted on Hugging Face, provide the path or URL to the model
return pipeline('sentiment-analysis', model='cardiffnlp/twitter-roberta-base-sentiment')
# Initialize the model
sentiment_model = load_model()
# Function to analyze sentiment and provide motivational feedback
def analyze_sentiment(user_input):
result = sentiment_model(user_input)[0]
sentiment = result['label'].lower() # Convert to lowercase for easier comparison
# Analyze the mood and provide motivational messages accordingly
if sentiment == 'negative':
return (
"Mood Detected: Negative π\n\n"
"Stay positive! π Remember, tough times don't last, but tough people do!"
)
elif sentiment == 'neutral':
return (
"Mood Detected: Neutral π\n\n"
"It's good to reflect on steady days. Keep your goals in mind, and stay motivated!"
)
elif sentiment == 'positive':
return (
"Mood Detected: Positive π\n\n"
"You're on the right track! Keep shining! π"
)
else:
return (
"Mood Detected: Unknown π€\n\n"
"Keep going, you're doing great!"
)
# Gradio UI
def chatbot_ui():
# Define the Gradio interface
interface = gr.Interface(
fn=analyze_sentiment,
inputs=gr.Textbox(label="Enter your text here:", placeholder="Type your feelings or thoughts..."),
outputs=gr.Textbox(label="Motivational Message"),
title="Student Sentiment Analysis Chatbot",
description="This chatbot detects your mood and provides positive or motivational messages based on sentiment analysis."
)
return interface
# Launch the interface
if __name__ == "__main__":
chatbot_ui().launch()
|