File size: 2,198 Bytes
01c3c58
 
 
e9f4ddd
01c3c58
e9f4ddd
01c3c58
 
025ebfe
01c3c58
 
025ebfe
01c3c58
e9f4ddd
 
 
 
 
 
 
 
025ebfe
 
5f100b2
025ebfe
 
 
 
5f100b2
025ebfe
 
 
 
5f100b2
025ebfe
 
 
 
5f100b2
025ebfe
 
 
 
01c3c58
 
 
025ebfe
01c3c58
 
025ebfe
01c3c58
 
025ebfe
01c3c58
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import gradio as gr
from transformers import pipeline

# Load the pre-trained model (using the provided model or custom trained model)
def load_model():
    # Use Hugging Face's 'cardiffnlp/twitter-roberta-base-sentiment' or a custom model path
    return pipeline('sentiment-analysis', model='cardiffnlp/twitter-roberta-base-sentiment')

# Initialize the model
sentiment_model = load_model()

# Function to analyze sentiment and provide motivational feedback
def analyze_sentiment(user_input):
    # Get sentiment prediction
    result = sentiment_model(user_input)

    if not result:
        return "Could not determine sentiment. Please try again."
    
    sentiment = result[0]['label'].lower()  # Extract sentiment label and convert to lowercase for comparison
    print(f"Sentiment Analysis Result: {result}")  # Debug: Print model result for review

    # Analyze the mood and provide motivational messages accordingly
    if sentiment == 'negative':
        return (
            "Mood Detected: Negative πŸ˜”\n\n"
            "Stay positive! 🌟 Remember, tough times don't last, but tough people do!"
        )
    elif sentiment == 'neutral':
        return (
            "Mood Detected: Neutral 😐\n\n"
            "It's good to reflect on steady days. Keep your goals in mind, and stay motivated!"
        )
    elif sentiment == 'positive':
        return (
            "Mood Detected: Positive 😊\n\n"
            "You're on the right track! Keep shining! 🌞"
        )
    else:
        return (
            "Mood Detected: Unknown πŸ€”\n\n"
            "Keep going, you're doing great!"
        )

# Gradio UI
def chatbot_ui():
    # Define the Gradio interface
    interface = gr.Interface(
        fn=analyze_sentiment,
        inputs=gr.Textbox(label="Enter your text here:", placeholder="Type your feelings or thoughts..."),
        outputs=gr.Textbox(label="Motivational Message"),
        title="Student Sentiment Analysis Chatbot",
        description="This chatbot detects your mood and provides positive or motivational messages based on sentiment analysis."
    )

    return interface

# Launch the interface
if __name__ == "__main__":
    chatbot_ui().launch()