Madiharehan commited on
Commit
ddd504d
Β·
verified Β·
1 Parent(s): 993f144

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -7
app.py CHANGED
@@ -1,13 +1,16 @@
 
 
1
 
2
- import os
3
- os.system('pip install transformers torch')
4
- import streamlit as st
5
- from transformers import pipeline
 
6
 
7
  import streamlit as st
8
  from transformers import pipeline
9
 
10
- # Load the pre-trained model
11
  @st.cache_resource
12
  def load_model():
13
  return pipeline('sentiment-analysis', model='cardiffnlp/twitter-roberta-base-sentiment')
@@ -19,7 +22,7 @@ def analyze_sentiment(user_input):
19
  result = sentiment_model(user_input)[0]
20
  sentiment = result['label']
21
 
22
- if sentiment == 'NEGATIVE' or sentiment == 'NEUTRAL':
23
  return "Stay positive! 🌟 You can handle anything that comes your way."
24
  return "You're on the right track! Keep shining! 🌞"
25
 
@@ -27,7 +30,7 @@ def analyze_sentiment(user_input):
27
  st.title("Student Sentiment Analysis Chatbot")
28
  st.write("This chatbot detects your mood and provides positive or motivational messages.")
29
 
30
- # User input
31
  user_input = st.text_area("Enter your text here:")
32
 
33
  # Button to analyze sentiment
@@ -37,3 +40,4 @@ if st.button("Analyze Sentiment"):
37
  else:
38
  message = analyze_sentiment(user_input)
39
  st.success(message)
 
 
1
+ import subprocess
2
+ import sys
3
 
4
+ # Ensure dependencies are installed
5
+ try:
6
+ import transformers
7
+ except ImportError:
8
+ subprocess.run([sys.executable, "-m", "pip", "install", "transformers", "torch"])
9
 
10
  import streamlit as st
11
  from transformers import pipeline
12
 
13
+ # Load the pre-trained model (cached for performance)
14
  @st.cache_resource
15
  def load_model():
16
  return pipeline('sentiment-analysis', model='cardiffnlp/twitter-roberta-base-sentiment')
 
22
  result = sentiment_model(user_input)[0]
23
  sentiment = result['label']
24
 
25
+ if sentiment in ['NEGATIVE', 'NEUTRAL']:
26
  return "Stay positive! 🌟 You can handle anything that comes your way."
27
  return "You're on the right track! Keep shining! 🌞"
28
 
 
30
  st.title("Student Sentiment Analysis Chatbot")
31
  st.write("This chatbot detects your mood and provides positive or motivational messages.")
32
 
33
+ # User input section
34
  user_input = st.text_area("Enter your text here:")
35
 
36
  # Button to analyze sentiment
 
40
  else:
41
  message = analyze_sentiment(user_input)
42
  st.success(message)
43
+