File size: 9,009 Bytes
0bbe342
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
import re
import time
from dataclasses import dataclass
from glob import iglob
import argparse
import torch
from einops import rearrange
from fire import Fire
from PIL import ExifTags, Image

from flux.sampling import denoise, get_schedule, prepare, unpack
from flux.util import (configs, embed_watermark, load_ae, load_clip,
                       load_flow_model, load_t5)
from transformers import pipeline
from PIL import Image
import numpy as np

import os

NSFW_THRESHOLD = 0.85

@dataclass
class SamplingOptions:
    source_prompt: str
    target_prompt: str
    # prompt: str
    width: int
    height: int
    num_steps: int
    guidance: float
    seed: int | None

@torch.inference_mode()
def encode(init_image, torch_device, ae):
    init_image = torch.from_numpy(init_image).permute(2, 0, 1).float() / 127.5 - 1
    init_image = init_image.unsqueeze(0) 
    init_image = init_image.to(torch_device)
    init_image = ae.encode(init_image.to()).to(torch.bfloat16)
    return init_image

@torch.inference_mode()
def main(
    args,
    seed: int | None = None,
    device: str = "cuda" if torch.cuda.is_available() else "cpu",
    num_steps: int | None = None,
    loop: bool = False,
    offload: bool = False,
    add_sampling_metadata: bool = True,
):
    """
    Sample the flux model. Either interactively (set `--loop`) or run for a
    single image.

    Args:
        name: Name of the model to load
        height: height of the sample in pixels (should be a multiple of 16)
        width: width of the sample in pixels (should be a multiple of 16)
        seed: Set a seed for sampling
        output_name: where to save the output image, `{idx}` will be replaced
            by the index of the sample
        prompt: Prompt used for sampling
        device: Pytorch device
        num_steps: number of sampling steps (default 4 for schnell, 50 for guidance distilled)
        loop: start an interactive session and sample multiple times
        guidance: guidance value used for guidance distillation
        add_sampling_metadata: Add the prompt to the image Exif metadata
    """
    torch.set_grad_enabled(False)
    name = args.name
    source_prompt = args.source_prompt
    target_prompt = args.target_prompt
    guidance = args.guidance
    output_dir = args.output_dir
    num_steps = args.num_steps
    offload = args.offload

    nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection", device=device)

    if name not in configs:
        available = ", ".join(configs.keys())
        raise ValueError(f"Got unknown model name: {name}, chose from {available}")

    torch_device = torch.device(device)
    if num_steps is None:
        num_steps = 4 if name == "flux-schnell" else 25

    # init all components
    t5 = load_t5(torch_device, max_length=256 if name == "flux-schnell" else 512)
    clip = load_clip(torch_device)
    model = load_flow_model(name, device="cpu" if offload else torch_device)
    ae = load_ae(name, device="cpu" if offload else torch_device)

    if offload:
        model.cpu()
        torch.cuda.empty_cache()
        ae.encoder.to(torch_device)
    
    init_image = None
    init_image = np.array(Image.open(args.source_img_dir).convert('RGB'))
    
    shape = init_image.shape

    new_h = shape[0] if shape[0] % 16 == 0 else shape[0] - shape[0] % 16
    new_w = shape[1] if shape[1] % 16 == 0 else shape[1] - shape[1] % 16

    init_image = init_image[:new_h, :new_w, :]

    width, height = init_image.shape[0], init_image.shape[1]
    init_image = encode(init_image, torch_device, ae)

    rng = torch.Generator(device="cpu")
    opts = SamplingOptions(
        source_prompt=source_prompt,
        target_prompt=target_prompt,
        width=width,
        height=height,
        num_steps=num_steps,
        guidance=guidance,
        seed=seed,
    )

    if loop:
        opts = parse_prompt(opts)

    while opts is not None:
        if opts.seed is None:
            opts.seed = rng.seed()
        print(f"Generating with seed {opts.seed}:\n{opts.source_prompt}")
        t0 = time.perf_counter()

        opts.seed = None
        if offload:
            ae = ae.cpu()
            torch.cuda.empty_cache()
            t5, clip = t5.to(torch_device), clip.to(torch_device)

        info = {}
        info['feature_path'] = args.feature_path
        info['feature'] = {}
        info['inject_step'] = args.inject
        if not os.path.exists(args.feature_path):
            os.mkdir(args.feature_path)

        inp = prepare(t5, clip, init_image, prompt=opts.source_prompt)
        inp_target = prepare(t5, clip, init_image, prompt=opts.target_prompt)
        timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell"))

        # offload TEs to CPU, load model to gpu
        if offload:
            t5, clip = t5.cpu(), clip.cpu()
            torch.cuda.empty_cache()
            model = model.to(torch_device)

        # inversion initial noise
        z, info = denoise(model, **inp, timesteps=timesteps, guidance=1, inverse=True, info=info)
        
        inp_target["img"] = z

        timesteps = get_schedule(opts.num_steps, inp_target["img"].shape[1], shift=(name != "flux-schnell"))

        # denoise initial noise
        x, _ = denoise(model, **inp_target, timesteps=timesteps, guidance=guidance, inverse=False, info=info)
        
        if offload:
            model.cpu()
            torch.cuda.empty_cache()
            ae.decoder.to(x.device)

        # decode latents to pixel space
        batch_x = unpack(x.float(), opts.width, opts.height)

        for x in batch_x:
            x = x.unsqueeze(0)
            output_name = os.path.join(output_dir, "img_{idx}.jpg")
            if not os.path.exists(output_dir):
                os.makedirs(output_dir)
                idx = 0
            else:
                fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
                if len(fns) > 0:
                    idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
                else:
                    idx = 0

            with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
                x = ae.decode(x)

            if torch.cuda.is_available():
                torch.cuda.synchronize()
            t1 = time.perf_counter()

            fn = output_name.format(idx=idx)
            print(f"Done in {t1 - t0:.1f}s. Saving {fn}")
            # bring into PIL format and save
            x = x.clamp(-1, 1)
            x = embed_watermark(x.float())
            x = rearrange(x[0], "c h w -> h w c")

            img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
            nsfw_score = [x["score"] for x in nsfw_classifier(img) if x["label"] == "nsfw"][0]
            
            if nsfw_score < NSFW_THRESHOLD:
                exif_data = Image.Exif()
                exif_data[ExifTags.Base.Software] = "AI generated;txt2img;flux"
                exif_data[ExifTags.Base.Make] = "Black Forest Labs"
                exif_data[ExifTags.Base.Model] = name
                if add_sampling_metadata:
                    exif_data[ExifTags.Base.ImageDescription] = source_prompt
                img.save(fn, exif=exif_data, quality=95, subsampling=0)
                idx += 1
            else:
                print("Your generated image may contain NSFW content.")

            if loop:
                print("-" * 80)
                opts = parse_prompt(opts)
            else:
                opts = None

if __name__ == "__main__":
    
    parser = argparse.ArgumentParser(description='RF-Edit')

    parser.add_argument('--name', default='flux-dev', type=str,
                        help='flux model')
    parser.add_argument('--source_img_dir', default='', type=str,
                        help='The path of the source image')
    parser.add_argument('--source_prompt', type=str,
                        help='describe the content of the source image (or leaves it as null)')
    parser.add_argument('--target_prompt', type=str,
                        help='describe the requirement of editing')
    parser.add_argument('--feature_path', type=str, default='feature',
                        help='the path to save the feature ')
    parser.add_argument('--guidance', type=float, default=5,
                        help='guidance scale')
    parser.add_argument('--num_steps', type=int, default=25,
                        help='the number of timesteps for inversion and denoising')
    parser.add_argument('--inject', type=int, default=20,
                        help='the number of timesteps which apply the feature sharing')
    parser.add_argument('--output_dir', default='output', type=str,
                        help='the path of the edited image')
    parser.add_argument('--offload', action='store_true', help='set it to True if the memory of GPU is not enough')

    args = parser.parse_args()

    main(args)