File size: 13,919 Bytes
dcb20f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 |
# π AI Dataset Studio - Complete Deployment Guide
**Deploy your AI-powered dataset creation platform with Perplexity integration**
---
## π Pre-Deployment Checklist
### β
**Required Files**
Ensure you have all these files ready:
```
ai-dataset-studio/
βββ app.py # Main application with Perplexity integration
βββ perplexity_client.py # Perplexity AI client
βββ config.py # Configuration management
βββ requirements.txt # Dependencies
βββ README.md # Documentation
βββ DEPLOYMENT.md # This guide
βββ utils.py # Utility functions (optional)
```
### β
**API Keys & Environment**
- [ ] **Perplexity API Key** - Get from [Perplexity AI](https://www.perplexity.ai/)
- [ ] **HuggingFace Account** - For Space hosting
- [ ] **Optional**: HuggingFace Token for private datasets
---
## π― Deployment Options
### **Option 1: Full AI-Powered Deployment (Recommended)**
*Best for: Professional use, maximum features*
#### Hardware: **T4 Small** ($0.60/hour)
- β
GPU acceleration for AI models
- β
Fast processing (5-15s per article)
- β
All Perplexity features enabled
- β
Production-ready performance
#### **Step-by-Step:**
1. **Create HuggingFace Space**
```bash
# Go to: https://huggingface.co/new-space
Space Name: ai-dataset-studio
SDK: Gradio
Hardware: T4 Small
Visibility: Public (or Private)
```
2. **Upload Files**
- Copy all files from artifacts above
- Ensure `app.py` is the main file
- Keep file structure intact
3. **Set Environment Variables**
```bash
# In Space Settings β Repository secrets:
PERPLEXITY_API_KEY = your_perplexity_api_key_here
# Optional:
HF_TOKEN = your_huggingface_token
LOG_LEVEL = INFO
DEBUG = false
```
4. **Deploy & Test**
- Space will build automatically (2-3 minutes)
- Test Perplexity integration first
- Verify all templates work
---
### **Option 2: Budget-Friendly Deployment**
*Best for: Testing, learning, cost-conscious users*
#### Hardware: **CPU Basic** (Free)
- β‘ Basic functionality available
- β οΈ Slower AI processing (30-60s per article)
- β
Perplexity discovery still works
- β
Perfect for getting started
#### **Step-by-Step:**
1. **Create Space with CPU Basic**
```bash
Space Name: ai-dataset-studio
SDK: Gradio
Hardware: CPU Basic (Free)
```
2. **Upload Core Files**
```bash
# Essential files only:
app.py
perplexity_client.py
requirements.txt
README.md
config.py
```
3. **Set API Key**
```bash
PERPLEXITY_API_KEY = your_api_key
```
4. **Gradual Upgrade Path**
- Start with CPU Basic
- Test functionality
- Upgrade to T4 Small when ready
---
### **Option 3: Enterprise Deployment**
*Best for: High-volume usage, team collaboration*
#### Hardware: **A10G Small** ($1.05/hour)
- π Maximum performance (3-8s per article)
- πͺ Handle large batch processing
- π Support multiple concurrent users
- π Production-scale capabilities
#### **Additional Setup:**
1. **Persistent Storage**
```bash
# In Space settings:
Storage: Small Persistent ($5/month)
# Enables data persistence between restarts
```
2. **Advanced Configuration**
```bash
# Environment variables:
MAX_SOURCES_PER_SEARCH = 50
BATCH_SIZE = 16
ENABLE_CACHING = true
CONCURRENT_REQUESTS = 5
```
3. **Monitoring Setup**
```bash
# Enable detailed logging:
LOG_LEVEL = DEBUG
ENABLE_METRICS = true
```
---
## π§ Configuration Details
### **Perplexity API Setup**
1. **Get API Key**
```bash
# Visit: https://www.perplexity.ai/
# Sign up for account
# Navigate to API section
# Generate new API key
# Copy key for environment setup
```
2. **Test API Key**
```python
# Quick test script:
import requests
headers = {
'Authorization': 'Bearer YOUR_API_KEY',
'Content-Type': 'application/json'
}
response = requests.post(
'https://api.perplexity.ai/chat/completions',
headers=headers,
json={
"model": "llama-3.1-sonar-large-128k-online",
"messages": [{"role": "user", "content": "Test message"}]
}
)
print("API Status:", response.status_code)
```
### **Hardware Requirements by Use Case**
| Use Case | Hardware | Monthly Cost | Performance | Best For |
|----------|----------|--------------|-------------|----------|
| **Learning** | CPU Basic | Free | Basic | Students, hobbyists |
| **Development** | CPU Upgrade | $22 | Good | Developers, testing |
| **Production** | T4 Small | $432 | Excellent | Businesses, researchers |
| **Enterprise** | A10G Small | $756 | Maximum | High-volume, teams |
### **Memory & Storage Planning**
```bash
# Model Memory Usage:
BART Summarization: ~1.5GB
RoBERTa Sentiment: ~500MB
BERT NER: ~400MB
Base Application: ~200MB
Total GPU Memory: ~2.5GB (T4 Small = 16GB, plenty of headroom)
# Storage Usage:
Application Files: ~50MB
Model Cache: ~2GB
Temporary Data: ~100MB per project
Persistent Storage: Optional, recommended for large projects
```
---
## π§ͺ Testing Your Deployment
### **Basic Functionality Test**
1. **Launch Application**
```bash
# Your Space URL: https://huggingface.co/spaces/YOUR_USERNAME/ai-dataset-studio
# Wait for "Running" status
# Interface should load within 30-60 seconds
```
2. **Test Project Creation**
```bash
Project Name: "Test Sentiment Analysis"
Template: Sentiment Analysis
Description: "Testing the deployment"
Click: "Create Project"
Expected: "β
Project created successfully"
```
3. **Test Perplexity Integration**
```bash
AI Search Description: "Product reviews for sentiment analysis"
Search Type: General
Max Sources: 10
Click: "Discover Sources with AI"
Expected: List of relevant URLs with quality scores
```
### **Advanced Testing**
4. **Test Complete Workflow**
```bash
# Use discovered sources from step 3
Click: "Use These Sources"
Click: "Start Scraping"
Wait: Processing to complete
Click: "Process Data"
Select: Same template as project
Click: "Export Dataset"
Format: JSON
Expected: Downloadable dataset file
```
5. **Performance Benchmarks**
```bash
# Timing expectations:
AI Source Discovery: 5-15 seconds
Scraping 10 URLs: 30-120 seconds
Processing Data: 30-180 seconds (depends on hardware)
Export: 5-10 seconds
```
---
## π¨ Troubleshooting
### **Common Issues & Solutions**
#### β **"Perplexity API key not found"**
```bash
# Problem: Environment variable not set
# Solution:
1. Go to Space Settings β Repository secrets
2. Add: PERPLEXITY_API_KEY = your_key_here
3. Restart Space
4. Check logs for "β
Perplexity AI client initialized"
```
#### β **"No sources found" from AI discovery**
```bash
# Problem: Search query too specific or API limits
# Solutions:
1. Make description more general
2. Try different search types
3. Check API key has sufficient credits
4. Use manual URL entry as fallback
```
#### β **"Model loading failed"**
```bash
# Problem: Insufficient memory or network issues
# Solutions:
1. Upgrade to T4 Small for GPU memory
2. Wait 2-3 minutes for model downloads
3. Check Space logs for specific errors
4. Restart Space if persistent
```
#### β **"Scraping failed" for multiple URLs**
```bash
# Problem: Rate limiting or blocked access
# Solutions:
1. Reduce concurrent requests
2. Check robots.txt compliance
3. Use more diverse sources
4. Verify URLs are publicly accessible
```
### **Debug Mode**
Enable detailed logging for troubleshooting:
```bash
# Environment variables:
DEBUG = true
LOG_LEVEL = DEBUG
# Then check Space logs for detailed information
```
### **Health Check Script**
```python
# Add this to test basic functionality:
def health_check():
"""Test all components"""
# Test imports
try:
import gradio
print("β
Gradio imported")
except ImportError:
print("β Gradio import failed")
# Test Perplexity
try:
from perplexity_client import PerplexityClient
client = PerplexityClient()
if client._validate_api_key():
print("β
Perplexity API key valid")
else:
print("β Perplexity API key invalid")
except Exception as e:
print(f"β Perplexity error: {e}")
# Test models
try:
from transformers import pipeline
print("β
Transformers available")
except ImportError:
print("β οΈ Transformers not available (CPU fallback)")
# Run health check in your Space
```
---
## π Maintenance & Updates
### **Regular Maintenance Tasks**
1. **Monitor API Usage**
```bash
# Check Perplexity dashboard for:
- API calls remaining
- Rate limit status
- Billing usage
```
2. **Update Dependencies**
```bash
# Periodically update requirements.txt:
gradio>=4.44.0 # Check for latest version
transformers>=4.30.0
# Test thoroughly after updates
```
3. **Performance Monitoring**
```bash
# Monitor Space metrics:
- CPU/GPU usage
- Memory consumption
- Request response times
- Error rates
```
### **Backup Strategy**
```bash
# Important data to backup:
1. Configuration files (app.py, config.py)
2. Custom templates or modifications
3. API keys and environment variables
4. Any persistent data or datasets
# HuggingFace Spaces automatically versions your files
# Use git commands to manage versions
```
---
## π Scaling & Optimization
### **Performance Optimization**
1. **Model Optimization**
```python
# In config.py, adjust for your needs:
batch_size = 16 # Increase for better GPU utilization
max_sequence_length = 256 # Reduce for faster processing
confidence_threshold = 0.8 # Higher for better quality
```
2. **Caching Strategy**
```python
# Enable model caching:
cache_models = True
model_cache_dir = "./model_cache"
# Cache API responses:
cache_api_responses = True
cache_ttl_hours = 24
```
3. **Resource Management**
```python
# Optimize memory usage:
clear_cache_after_processing = True
max_concurrent_requests = 3
timeout_per_url = 10 # seconds
```
### **Cost Optimization**
1. **Auto-Sleep Configuration**
```bash
# HuggingFace Spaces auto-sleep after 1 hour idle
# No additional configuration needed
# Automatically resumes on next request
```
2. **Hardware Scheduling**
```bash
# Strategy: Start with CPU Basic
# Upgrade to T4 Small during processing
# Downgrade back to CPU Basic when idle
```
3. **API Cost Management**
```bash
# Perplexity API optimization:
- Cache search results for similar queries
- Use more specific search terms
- Implement request batching
- Set reasonable max_sources limits
```
---
## π Best Practices
### **Security Best Practices**
1. **API Key Management**
```bash
β
Store in HuggingFace Spaces secrets
β
Never commit to git repositories
β
Rotate keys periodically
β
Monitor usage for anomalies
```
2. **Safe Scraping**
```bash
β
Respect robots.txt
β
Implement rate limiting
β
Use appropriate user agents
β
Avoid private/internal networks
```
3. **Data Privacy**
```bash
β
No persistent data storage by default
β
Clear temporary files after processing
β
Respect copyright and fair use
β
Provide clear data source attribution
```
### **Development Best Practices**
1. **Testing Strategy**
```bash
# Test with small datasets first
# Verify each step of the pipeline
# Use diverse source types
# Test error conditions
```
2. **Version Control**
```bash
# Use git for file management
# Tag stable releases
# Document changes and updates
# Keep rollback capability
```
3. **Documentation**
```bash
# Keep README.md updated
# Document custom configurations
# Provide usage examples
# Include troubleshooting guides
```
---
## π Getting Help
### **Support Channels**
1. **HuggingFace Community**
- Discussions: Share issues and solutions
- Discord: Real-time help from community
2. **GitHub Issues**
- Bug reports and feature requests
- Include logs and configuration details
3. **Documentation**
- README.md: Complete usage guide
- DEPLOYMENT.md: This guide
- Code comments: Inline documentation
### **Information to Include When Asking for Help**
```bash
1. Deployment type (CPU Basic, T4 Small, etc.)
2. Error messages (exact text)
3. Space logs (relevant sections)
4. Configuration details (without API keys)
5. Steps to reproduce the issue
6. Expected vs actual behavior
```
---
## π Success Indicators
Your deployment is successful when you see:
```bash
β
Space builds without errors
β
Interface loads within 60 seconds
β
Perplexity AI discovery works
β
Can create projects and scrape URLs
β
AI processing generates quality data
β
Export produces valid dataset files
β
No persistent errors in logs
```
---
## π What's Next?
After successful deployment:
1. **Create Your First Dataset**
- Start with a simple sentiment analysis project
- Use AI discovery to find sources
- Process and export a small dataset
2. **Explore Advanced Features**
- Try different templates
- Experiment with search types
- Test batch processing
3. **Optimize for Your Use Case**
- Adjust configurations
- Create custom templates
- Integrate with your ML pipeline
4. **Share and Collaborate**
- Make Space public to help others
- Contribute improvements
- Share success stories
**Your AI Dataset Studio is now ready to revolutionize how you create training datasets!** π―
*From idea to ML-ready dataset in minutes, not weeks.* |