File size: 26,651 Bytes
c3b493b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
"""
πŸ“š Perplexity AI Integration Examples
Demonstrate how to effectively use AI-powered source discovery for dataset creation
"""

import os
import json
import time
from typing import List, Dict
from datetime import datetime

# Import our Perplexity client
try:
    from perplexity_client import PerplexityClient, SearchType, SourceResult
    PERPLEXITY_AVAILABLE = True
except ImportError:
    print("⚠️ Perplexity client not available. Make sure perplexity_client.py is in the same directory.")
    PERPLEXITY_AVAILABLE = False

def example_sentiment_analysis_sources():
    """
    πŸ“Š Example: Find sources for sentiment analysis dataset
    
    This example shows how to discover diverse sources for sentiment analysis,
    including product reviews, social media, and news content.
    """
    print("πŸ“Š Example: Sentiment Analysis Source Discovery")
    print("=" * 60)
    
    if not PERPLEXITY_AVAILABLE:
        print("❌ Perplexity client not available")
        return
    
    client = PerplexityClient()
    
    if not client._validate_api_key():
        print("❌ Please set PERPLEXITY_API_KEY environment variable")
        return
    
    # Different types of sentiment analysis projects
    projects = [
        {
            "description": "Product reviews from e-commerce sites for sentiment classification of customer feedback",
            "search_type": SearchType.GENERAL,
            "focus": "E-commerce reviews"
        },
        {
            "description": "Movie and entertainment reviews for sentiment analysis training with detailed ratings",
            "search_type": SearchType.GENERAL,
            "focus": "Entertainment reviews"
        },
        {
            "description": "Social media posts and comments about brands for real-time sentiment monitoring",
            "search_type": SearchType.SOCIAL,
            "focus": "Social media sentiment"
        },
        {
            "description": "News articles with opinion content for political sentiment analysis research",
            "search_type": SearchType.NEWS,
            "focus": "News opinion analysis"
        }
    ]
    
    all_results = []
    
    for i, project in enumerate(projects, 1):
        print(f"\nπŸ” Project {i}: {project['focus']}")
        print("-" * 40)
        
        try:
            results = client.discover_sources(
                project_description=project["description"],
                search_type=project["search_type"],
                max_sources=8,
                include_academic=False,  # Focus on practical sources
                include_news=True
            )
            
            print(f"βœ… Found {len(results.sources)} sources in {results.search_time:.1f}s")
            
            # Show top 3 sources
            for j, source in enumerate(results.sources[:3], 1):
                print(f"  {j}. {source.title}")
                print(f"     URL: {source.url}")
                print(f"     Type: {source.source_type} | Score: {source.relevance_score:.1f}/10")
                print(f"     Description: {source.description[:100]}...")
                print()
            
            all_results.extend(results.sources)
            
            if results.suggestions:
                print(f"πŸ’‘ Suggestions: {', '.join(results.suggestions[:3])}")
            
        except Exception as e:
            print(f"❌ Error: {e}")
        
        # Respectful delay between requests
        time.sleep(1)
    
    # Summary
    print(f"\nπŸ“Š SUMMARY")
    print("-" * 40)
    print(f"Total sources discovered: {len(all_results)}")
    
    # Analyze source types
    source_types = {}
    for source in all_results:
        source_types[source.source_type] = source_types.get(source.source_type, 0) + 1
    
    print("Source type distribution:")
    for stype, count in sorted(source_types.items()):
        print(f"  {stype}: {count} sources")
    
    # Top domains
    domains = {}
    for source in all_results:
        domains[source.domain] = domains.get(source.domain, 0) + 1
    
    print("\nTop domains:")
    for domain, count in sorted(domains.items(), key=lambda x: x[1], reverse=True)[:5]:
        print(f"  {domain}: {count} sources")
    
    return all_results

def example_text_classification_sources():
    """
    πŸ“‚ Example: Find sources for text classification dataset
    
    This example demonstrates finding well-categorized content for
    multi-class text classification training.
    """
    print("\nπŸ“‚ Example: Text Classification Source Discovery")
    print("=" * 60)
    
    if not PERPLEXITY_AVAILABLE:
        print("❌ Perplexity client not available")
        return
    
    client = PerplexityClient()
    
    # Multi-domain classification project
    project_description = """
    Find diverse news articles and content with clear topical categories for training 
    a multi-class text classifier. Need sources covering politics, technology, sports, 
    business, entertainment, health, and science topics with consistent categorization.
    """
    
    try:
        results = client.discover_sources(
            project_description=project_description,
            search_type=SearchType.NEWS,
            max_sources=15,
            include_academic=True,  # Include academic sources for science topics
            include_news=True
        )
        
        print(f"βœ… Found {len(results.sources)} sources")
        
        # Categorize sources by likely content type
        categorized = {
            "news": [],
            "academic": [],
            "business": [],
            "technology": [],
            "other": []
        }
        
        for source in results.sources:
            domain = source.domain.lower()
            if any(news in domain for news in ['reuters', 'bbc', 'cnn', 'news']):
                categorized["news"].append(source)
            elif any(academic in domain for academic in ['arxiv', 'pubmed', 'scholar', 'edu']):
                categorized["academic"].append(source)
            elif any(biz in domain for biz in ['bloomberg', 'forbes', 'business', 'financial']):
                categorized["business"].append(source)
            elif any(tech in domain for tech in ['techcrunch', 'wired', 'tech', 'digital']):
                categorized["technology"].append(source)
            else:
                categorized["other"].append(source)
        
        print("\nπŸ“‹ Sources by Category:")
        for category, sources in categorized.items():
            if sources:
                print(f"\n{category.upper()} ({len(sources)} sources):")
                for source in sources[:2]:  # Show top 2 per category
                    print(f"  β€’ {source.title}")
                    print(f"    {source.url}")
                    print(f"    Score: {source.relevance_score:.1f}/10")
        
        # Export for use
        export_data = client.export_sources(results, "json")
        
        # Save to file
        filename = f"text_classification_sources_{int(time.time())}.json"
        with open(filename, 'w', encoding='utf-8') as f:
            f.write(export_data)
        
        print(f"\nπŸ“„ Sources exported to: {filename}")
        
        return results.sources
        
    except Exception as e:
        print(f"❌ Error: {e}")
        return []

def example_academic_research_sources():
    """
    πŸŽ“ Example: Find academic sources for research dataset
    
    This example shows how to discover high-quality academic sources
    for research-focused datasets.
    """
    print("\nπŸŽ“ Example: Academic Research Source Discovery")
    print("=" * 60)
    
    if not PERPLEXITY_AVAILABLE:
        print("❌ Perplexity client not available")
        return
    
    client = PerplexityClient()
    
    # Research-focused projects
    research_topics = [
        {
            "description": "Recent machine learning research papers on transformer architectures and attention mechanisms for NLP survey dataset",
            "domain_focus": "AI/ML research"
        },
        {
            "description": "Climate change research papers and reports for environmental science text summarization training",
            "domain_focus": "Climate science"
        },
        {
            "description": "Medical research papers on drug discovery and pharmaceutical research for biomedical NER training",
            "domain_focus": "Medical research"
        }
    ]
    
    all_academic_sources = []
    
    for topic in research_topics:
        print(f"\nπŸ”¬ Research Topic: {topic['domain_focus']}")
        print("-" * 40)
        
        try:
            results = client.discover_sources(
                project_description=topic["description"],
                search_type=SearchType.ACADEMIC,
                max_sources=10,
                include_academic=True,
                include_news=False  # Focus on academic sources only
            )
            
            print(f"βœ… Found {len(results.sources)} academic sources")
            
            # Filter for high-quality academic sources
            high_quality = [s for s in results.sources if s.relevance_score >= 7.0]
            
            print(f"πŸ“š High-quality sources (score β‰₯ 7.0): {len(high_quality)}")
            
            for source in high_quality[:3]:
                print(f"\n  πŸ“„ {source.title}")
                print(f"      URL: {source.url}")
                print(f"      Domain: {source.domain}")
                print(f"      Score: {source.relevance_score:.1f}/10")
                print(f"      Type: {source.source_type}")
            
            all_academic_sources.extend(high_quality)
            
        except Exception as e:
            print(f"❌ Error: {e}")
        
        time.sleep(1)  # Respectful delay
    
    # Analysis
    print(f"\nπŸ“Š ACADEMIC SOURCES ANALYSIS")
    print("-" * 40)
    print(f"Total high-quality academic sources: {len(all_academic_sources)}")
    
    # Domain analysis
    academic_domains = {}
    for source in all_academic_sources:
        domain = source.domain
        academic_domains[domain] = academic_domains.get(domain, 0) + 1
    
    print("\nTop academic domains:")
    for domain, count in sorted(academic_domains.items(), key=lambda x: x[1], reverse=True)[:5]:
        print(f"  {domain}: {count} papers")
    
    # Quality distribution
    scores = [s.relevance_score for s in all_academic_sources]
    if scores:
        avg_score = sum(scores) / len(scores)
        print(f"\nAverage quality score: {avg_score:.1f}/10")
        print(f"Score range: {min(scores):.1f} - {max(scores):.1f}")
    
    return all_academic_sources

def example_custom_search_strategies():
    """
    🎯 Example: Custom search strategies for specific needs
    
    This example demonstrates advanced techniques for finding
    very specific types of content.
    """
    print("\n🎯 Example: Custom Search Strategies")
    print("=" * 60)
    
    if not PERPLEXITY_AVAILABLE:
        print("❌ Perplexity client not available")
        return
    
    client = PerplexityClient()
    
    # Strategy 1: Domain-specific search
    print("\nπŸ” Strategy 1: Domain-specific Financial Content")
    print("-" * 50)
    
    try:
        financial_results = client.get_domain_sources(
            domain="bloomberg.com",
            topic="quarterly earnings reports and financial analysis",
            max_sources=5
        )
        
        print(f"βœ… Found {len(financial_results.sources)} financial sources")
        for source in financial_results.sources[:2]:
            print(f"  β€’ {source.title}")
            print(f"    Score: {source.relevance_score:.1f}/10")
        
    except Exception as e:
        print(f"❌ Error: {e}")
    
    # Strategy 2: Keyword-based search
    print("\nπŸ” Strategy 2: Keyword-based Technical Content")
    print("-" * 50)
    
    try:
        tech_keywords = ["API documentation", "software tutorials", "programming guides", "technical specifications"]
        tech_results = client.search_with_keywords(
            keywords=tech_keywords,
            search_type=SearchType.TECHNICAL
        )
        
        print(f"βœ… Found {len(tech_results.sources)} technical sources")
        for source in tech_results.sources[:2]:
            print(f"  β€’ {source.title}")
            print(f"    Type: {source.source_type}")
        
    except Exception as e:
        print(f"❌ Error: {e}")
    
    # Strategy 3: Multi-format search
    print("\nπŸ” Strategy 3: Multi-format Content Discovery")
    print("-" * 50)
    
    multiformat_description = """
    Find diverse content formats including FAQ pages, interview transcripts, 
    tutorial content, and documentation for question-answering dataset creation. 
    Need sources with clear question-answer patterns and structured information.
    """
    
    try:
        qa_results = client.discover_sources(
            project_description=multiformat_description,
            search_type=SearchType.GENERAL,
            max_sources=12
        )
        
        print(f"βœ… Found {len(qa_results.sources)} Q&A sources")
        
        # Categorize by content format
        formats = {
            "faq": [],
            "tutorial": [],
            "documentation": [],
            "interview": [],
            "other": []
        }
        
        for source in qa_results.sources:
            title_lower = source.title.lower()
            url_lower = source.url.lower()
            
            if any(faq in title_lower or faq in url_lower for faq in ['faq', 'questions', 'help']):
                formats["faq"].append(source)
            elif any(tut in title_lower for tut in ['tutorial', 'guide', 'how to']):
                formats["tutorial"].append(source)
            elif any(doc in title_lower or doc in url_lower for doc in ['docs', 'documentation', 'manual']):
                formats["documentation"].append(source)
            elif any(int in title_lower for int in ['interview', 'q&a', 'conversation']):
                formats["interview"].append(source)
            else:
                formats["other"].append(source)
        
        for format_type, sources in formats.items():
            if sources:
                print(f"\n  {format_type.upper()}: {len(sources)} sources")
                if sources:
                    best = max(sources, key=lambda x: x.relevance_score)
                    print(f"    Best: {best.title} (Score: {best.relevance_score:.1f})")
        
    except Exception as e:
        print(f"❌ Error: {e}")

def example_quality_assessment():
    """
    βœ… Example: Quality assessment and source validation
    
    This example shows how to evaluate and filter sources
    for maximum dataset quality.
    """
    print("\nβœ… Example: Source Quality Assessment")
    print("=" * 60)
    
    if not PERPLEXITY_AVAILABLE:
        print("❌ Perplexity client not available")
        return
    
    client = PerplexityClient()
    
    # Broad search to get diverse quality levels
    description = "Content for machine learning training including text classification and sentiment analysis"
    
    try:
        results = client.discover_sources(
            project_description=description,
            search_type=SearchType.GENERAL,
            max_sources=20
        )
        
        print(f"βœ… Found {len(results.sources)} total sources")
        
        # Quality analysis
        print(f"\nπŸ“Š QUALITY DISTRIBUTION")
        print("-" * 40)
        
        quality_tiers = {
            "excellent": [s for s in results.sources if s.relevance_score >= 8.0],
            "good": [s for s in results.sources if 6.0 <= s.relevance_score < 8.0],
            "acceptable": [s for s in results.sources if 4.0 <= s.relevance_score < 6.0],
            "poor": [s for s in results.sources if s.relevance_score < 4.0]
        }
        
        for tier, sources in quality_tiers.items():
            print(f"{tier.upper()}: {len(sources)} sources")
            if sources:
                avg_score = sum(s.relevance_score for s in sources) / len(sources)
                print(f"  Average score: {avg_score:.1f}")
                print(f"  Example: {sources[0].title[:50]}...")
        
        # Validate top sources
        print(f"\nπŸ” VALIDATING TOP SOURCES")
        print("-" * 40)
        
        top_sources = [s for s in results.sources if s.relevance_score >= 7.0]
        validated_sources = client.validate_sources(top_sources)
        
        print(f"Sources passed validation: {len(validated_sources)}/{len(top_sources)}")
        
        # Show validation results
        for source in validated_sources[:3]:
            print(f"\nβœ… VALIDATED: {source.title}")
            print(f"   URL: {source.url}")
            print(f"   Domain: {source.domain}")
            print(f"   Type: {source.source_type}")
            print(f"   Score: {source.relevance_score:.1f}/10")
            print(f"   Description: {source.description[:100]}...")
        
        # Export validated sources
        if validated_sources:
            export_data = {
                "search_query": description,
                "total_found": len(results.sources),
                "validated_count": len(validated_sources),
                "quality_threshold": 7.0,
                "sources": [
                    {
                        "url": s.url,
                        "title": s.title,
                        "domain": s.domain,
                        "type": s.source_type,
                        "score": s.relevance_score,
                        "description": s.description
                    }
                    for s in validated_sources
                ]
            }
            
            filename = f"validated_sources_{int(time.time())}.json"
            with open(filename, 'w', encoding='utf-8') as f:
                json.dump(export_data, f, indent=2)
            
            print(f"\nπŸ“„ Validated sources exported to: {filename}")
        
        return validated_sources
        
    except Exception as e:
        print(f"❌ Error: {e}")
        return []

def example_batch_processing():
    """
    ⚑ Example: Batch processing for large dataset projects
    
    This example demonstrates efficient batch discovery for
    large-scale dataset creation projects.
    """
    print("\n⚑ Example: Batch Processing for Large Projects")
    print("=" * 60)
    
    if not PERPLEXITY_AVAILABLE:
        print("❌ Perplexity client not available")
        return
    
    client = PerplexityClient()
    
    # Define multiple related searches for comprehensive coverage
    batch_searches = [
        {
            "name": "E-commerce Reviews",
            "description": "Product reviews from online stores for sentiment analysis",
            "search_type": SearchType.GENERAL,
            "max_sources": 8
        },
        {
            "name": "Social Media Content",
            "description": "Social media posts and comments for sentiment classification",
            "search_type": SearchType.SOCIAL,
            "max_sources": 8
        },
        {
            "name": "News Opinion",
            "description": "News articles with editorial content for opinion mining",
            "search_type": SearchType.NEWS,
            "max_sources": 8
        },
        {
            "name": "Forum Discussions",
            "description": "Forum posts and community discussions for sentiment analysis",
            "search_type": SearchType.GENERAL,
            "max_sources": 6
        }
    ]
    
    all_batch_results = []
    total_start_time = time.time()
    
    print(f"πŸš€ Processing {len(batch_searches)} batch searches...")
    
    for i, search in enumerate(batch_searches, 1):
        print(f"\nπŸ“ Batch {i}/{len(batch_searches)}: {search['name']}")
        print("-" * 40)
        
        search_start = time.time()
        
        try:
            results = client.discover_sources(
                project_description=search["description"],
                search_type=search["search_type"],
                max_sources=search["max_sources"]
            )
            
            search_time = time.time() - search_start
            
            print(f"βœ… Found {len(results.sources)} sources in {search_time:.1f}s")
            
            # Add batch metadata
            for source in results.sources:
                source.batch_name = search["name"]
                source.batch_index = i
            
            all_batch_results.extend(results.sources)
            
            # Show top result
            if results.sources:
                best = max(results.sources, key=lambda x: x.relevance_score)
                print(f"   Top result: {best.title} (Score: {best.relevance_score:.1f})")
            
        except Exception as e:
            print(f"❌ Batch {i} failed: {e}")
        
        # Rate limiting between batches
        time.sleep(1.5)
    
    total_time = time.time() - total_start_time
    
    # Batch results analysis
    print(f"\nπŸ“Š BATCH PROCESSING RESULTS")
    print("-" * 40)
    print(f"Total sources discovered: {len(all_batch_results)}")
    print(f"Total processing time: {total_time:.1f} seconds")
    print(f"Average per batch: {total_time/len(batch_searches):.1f} seconds")
    
    # Quality distribution across batches
    batch_stats = {}
    for source in all_batch_results:
        batch_name = getattr(source, 'batch_name', 'unknown')
        if batch_name not in batch_stats:
            batch_stats[batch_name] = {
                'count': 0,
                'avg_score': 0,
                'scores': []
            }
        
        batch_stats[batch_name]['count'] += 1
        batch_stats[batch_name]['scores'].append(source.relevance_score)
    
    # Calculate averages
    for batch_name, stats in batch_stats.items():
        if stats['scores']:
            stats['avg_score'] = sum(stats['scores']) / len(stats['scores'])
    
    print(f"\nBatch quality comparison:")
    for batch_name, stats in sorted(batch_stats.items(), key=lambda x: x[1]['avg_score'], reverse=True):
        print(f"  {batch_name}: {stats['count']} sources, avg score {stats['avg_score']:.1f}")
    
    # Export comprehensive results
    batch_export = {
        "project_name": "Large Scale Sentiment Analysis Dataset",
        "batch_processing_date": datetime.now().isoformat(),
        "total_sources": len(all_batch_results),
        "processing_time_seconds": total_time,
        "batches": len(batch_searches),
        "batch_statistics": batch_stats,
        "sources": [
            {
                "url": s.url,
                "title": s.title,
                "domain": s.domain,
                "type": s.source_type,
                "score": s.relevance_score,
                "batch": getattr(s, 'batch_name', 'unknown'),
                "description": s.description
            }
            for s in all_batch_results
        ]
    }
    
    filename = f"batch_results_{int(time.time())}.json"
    with open(filename, 'w', encoding='utf-8') as f:
        json.dump(batch_export, f, indent=2)
    
    print(f"\nπŸ“„ Batch results exported to: {filename}")
    print(f"πŸ’‘ Use these {len(all_batch_results)} sources to create a comprehensive sentiment analysis dataset!")
    
    return all_batch_results

def main():
    """
    πŸš€ Run all Perplexity AI examples
    
    This function demonstrates the full range of capabilities
    for AI-powered source discovery.
    """
    print("πŸš€ Perplexity AI Integration - Complete Examples")
    print("=" * 70)
    print("These examples show how to use AI-powered source discovery")
    print("to create high-quality datasets efficiently.\n")
    
    if not PERPLEXITY_AVAILABLE:
        print("❌ Cannot run examples - perplexity_client.py not found")
        print("Please ensure the perplexity_client.py file is in the same directory.")
        return
    
    if not os.getenv('PERPLEXITY_API_KEY'):
        print("❌ Cannot run examples - PERPLEXITY_API_KEY not set")
        print("Please set your Perplexity API key as an environment variable:")
        print("export PERPLEXITY_API_KEY='your_api_key_here'")
        return
    
    print("βœ… Perplexity AI client available and configured")
    print("🎯 Running comprehensive examples...\n")
    
    try:
        # Run all examples
        sentiment_sources = example_sentiment_analysis_sources()
        time.sleep(2)  # Respectful delay
        
        classification_sources = example_text_classification_sources()
        time.sleep(2)
        
        academic_sources = example_academic_research_sources()
        time.sleep(2)
        
        example_custom_search_strategies()
        time.sleep(2)
        
        validated_sources = example_quality_assessment()
        time.sleep(2)
        
        batch_sources = example_batch_processing()
        
        # Final summary
        print(f"\nπŸŽ‰ EXAMPLES COMPLETE!")
        print("=" * 70)
        print("Summary of discovered sources:")
        
        total_sources = 0
        if sentiment_sources:
            total_sources += len(sentiment_sources)
            print(f"  πŸ“Š Sentiment Analysis: {len(sentiment_sources)} sources")
        
        if classification_sources:
            total_sources += len(classification_sources)
            print(f"  πŸ“‚ Text Classification: {len(classification_sources)} sources")
        
        if academic_sources:
            total_sources += len(academic_sources)
            print(f"  πŸŽ“ Academic Research: {len(academic_sources)} sources")
        
        if validated_sources:
            print(f"  βœ… Validated High-Quality: {len(validated_sources)} sources")
        
        if batch_sources:
            print(f"  ⚑ Batch Processing: {len(batch_sources)} sources")
        
        print(f"\n🎯 Total unique sources discovered: {total_sources}")
        print("πŸ“„ Check the generated JSON files for detailed source information")
        print("\nπŸ’‘ Next steps:")
        print("  1. Review the exported source files")
        print("  2. Select the best sources for your specific use case")
        print("  3. Use these sources in your AI Dataset Studio")
        print("  4. Create amazing datasets with AI-powered discovery!")
        
    except Exception as e:
        print(f"❌ Error running examples: {e}")
        import traceback
        traceback.print_exc()

if __name__ == "__main__":
    main()