File size: 27,279 Bytes
dbedabb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
"""
πŸ§ͺ Testing utilities for Perplexity AI integration
Run comprehensive tests to validate your AI Dataset Studio deployment
"""

import os
import json
import time
import logging
from typing import Dict, List, Tuple, Optional
from datetime import datetime

# Configure logging for tests
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

def test_environment_setup() -> Dict[str, bool]:
    """
    πŸ” Test environment setup and dependencies
    
    Returns:
        Dict with test results for each component
    """
    results = {}
    
    print("πŸ” Testing Environment Setup...")
    print("=" * 50)
    
    # Test 1: Check Python version
    try:
        import sys
        python_version = sys.version_info
        if python_version >= (3, 8):
            print(f"βœ… Python version: {python_version.major}.{python_version.minor}")
            results['python_version'] = True
        else:
            print(f"❌ Python version too old: {python_version.major}.{python_version.minor} (need 3.8+)")
            results['python_version'] = False
    except Exception as e:
        print(f"❌ Python version check failed: {e}")
        results['python_version'] = False
    
    # Test 2: Check required packages
    required_packages = [
        ('gradio', 'Gradio'),
        ('requests', 'Requests'),
        ('pandas', 'Pandas'),
        ('beautifulsoup4', 'BeautifulSoup'),
        ('transformers', 'Transformers'),
        ('torch', 'PyTorch'),
        ('nltk', 'NLTK')
    ]
    
    for package, name in required_packages:
        try:
            __import__(package)
            print(f"βœ… {name} imported successfully")
            results[f'package_{package}'] = True
        except ImportError:
            print(f"⚠️ {name} not available (optional for some features)")
            results[f'package_{package}'] = False
    
    # Test 3: Check environment variables
    env_vars = ['PERPLEXITY_API_KEY', 'HF_TOKEN']
    for var in env_vars:
        if os.getenv(var):
            print(f"βœ… {var} is set")
            results[f'env_{var.lower()}'] = True
        else:
            status = "❌" if var == 'PERPLEXITY_API_KEY' else "⚠️"
            required = "required" if var == 'PERPLEXITY_API_KEY' else "optional"
            print(f"{status} {var} not set ({required})")
            results[f'env_{var.lower()}'] = bool(os.getenv(var))
    
    # Test 4: Check file structure
    required_files = ['app.py', 'perplexity_client.py', 'config.py', 'requirements.txt']
    for file in required_files:
        if os.path.exists(file):
            print(f"βœ… {file} found")
            results[f'file_{file}'] = True
        else:
            print(f"❌ {file} missing")
            results[f'file_{file}'] = False
    
    print("\n" + "=" * 50)
    return results

def test_perplexity_api() -> Dict[str, any]:
    """
    🧠 Test Perplexity API connectivity and functionality
    
    Returns:
        Dict with API test results
    """
    results = {
        'api_key_valid': False,
        'connection_successful': False,
        'response_quality': False,
        'rate_limiting': False,
        'error_handling': False
    }
    
    print("🧠 Testing Perplexity API...")
    print("=" * 50)
    
    try:
        from perplexity_client import PerplexityClient, SearchType
        
        # Test 1: API Key validation
        client = PerplexityClient()
        if client._validate_api_key():
            print("βœ… API key is valid")
            results['api_key_valid'] = True
        else:
            print("❌ API key validation failed")
            return results
        
        # Test 2: Basic connection
        try:
            test_results = client.discover_sources(
                project_description="Test query for API connectivity",
                search_type=SearchType.GENERAL,
                max_sources=5
            )
            
            if test_results.sources or test_results.perplexity_response:
                print("βœ… API connection successful")
                results['connection_successful'] = True
            else:
                print("⚠️ API connected but no results returned")
                results['connection_successful'] = True
        
        except Exception as e:
            print(f"❌ API connection failed: {e}")
            return results
        
        # Test 3: Response quality
        try:
            quality_test = client.discover_sources(
                project_description="Find product reviews for sentiment analysis machine learning training",
                search_type=SearchType.GENERAL,
                max_sources=10
            )
            
            if len(quality_test.sources) >= 3:
                avg_score = sum(s.relevance_score for s in quality_test.sources) / len(quality_test.sources)
                if avg_score >= 5.0:
                    print(f"βœ… Response quality good (avg score: {avg_score:.1f})")
                    results['response_quality'] = True
                else:
                    print(f"⚠️ Response quality moderate (avg score: {avg_score:.1f})")
                    results['response_quality'] = True
            else:
                print("⚠️ Limited response quality (few sources found)")
        
        except Exception as e:
            print(f"⚠️ Response quality test failed: {e}")
        
        # Test 4: Rate limiting
        try:
            start_time = time.time()
            
            # Make two quick requests
            client.discover_sources("Test query 1", max_sources=3)
            time.sleep(0.1)  # Small delay
            client.discover_sources("Test query 2", max_sources=3)
            
            elapsed = time.time() - start_time
            if elapsed >= 1.0:  # Should be rate limited to ~1 second minimum
                print("βœ… Rate limiting is working")
                results['rate_limiting'] = True
            else:
                print("⚠️ Rate limiting may not be active")
        
        except Exception as e:
            print(f"⚠️ Rate limiting test inconclusive: {e}")
        
        # Test 5: Error handling
        try:
            # Test with invalid/empty query
            error_test = client.discover_sources("", max_sources=1)
            print("βœ… Error handling works (handled empty query)")
            results['error_handling'] = True
        
        except Exception as e:
            print(f"βœ… Error handling works (caught exception: {type(e).__name__})")
            results['error_handling'] = True
    
    except ImportError:
        print("❌ Cannot import perplexity_client module")
    except Exception as e:
        print(f"❌ Unexpected error in Perplexity tests: {e}")
    
    print("\n" + "=" * 50)
    return results

def test_ai_models() -> Dict[str, bool]:
    """
    πŸ€– Test AI model loading and functionality
    
    Returns:
        Dict with model test results
    """
    results = {}
    
    print("πŸ€– Testing AI Models...")
    print("=" * 50)
    
    try:
        from transformers import pipeline
        import torch
        
        # Check GPU availability
        gpu_available = torch.cuda.is_available()
        print(f"πŸ”§ GPU available: {gpu_available}")
        results['gpu_available'] = gpu_available
        
        # Test sentiment analysis model
        try:
            sentiment_analyzer = pipeline(
                "sentiment-analysis",
                model="cardiffnlp/twitter-roberta-base-sentiment-latest",
                return_all_scores=True
            )
            
            test_text = "This is a great product!"
            result = sentiment_analyzer(test_text)
            
            if result and len(result[0]) > 0:
                print("βœ… Sentiment analysis model loaded and working")
                results['sentiment_model'] = True
            else:
                print("❌ Sentiment analysis model not working properly")
                results['sentiment_model'] = False
        
        except Exception as e:
            print(f"⚠️ Sentiment analysis model failed: {e}")
            results['sentiment_model'] = False
        
        # Test summarization model
        try:
            summarizer = pipeline(
                "summarization",
                model="facebook/bart-large-cnn",
                max_length=100,
                min_length=30
            )
            
            test_text = """
            Artificial intelligence has become increasingly important in modern technology.
            Machine learning algorithms are being used across various industries to solve
            complex problems and improve efficiency. Natural language processing, computer
            vision, and robotics are some of the key areas where AI is making significant
            contributions to society and business.
            """
            
            result = summarizer(test_text)
            
            if result and len(result[0]['summary_text']) > 10:
                print("βœ… Summarization model loaded and working")
                results['summarization_model'] = True
            else:
                print("❌ Summarization model not working properly")
                results['summarization_model'] = False
        
        except Exception as e:
            print(f"⚠️ Summarization model failed: {e}")
            results['summarization_model'] = False
        
        # Test NER model
        try:
            ner_model = pipeline(
                "ner",
                model="dbmdz/bert-large-cased-finetuned-conll03-english",
                aggregation_strategy="simple"
            )
            
            test_text = "Apple Inc. was founded by Steve Jobs in California."
            result = ner_model(test_text)
            
            if result and len(result) > 0:
                print("βœ… NER model loaded and working")
                results['ner_model'] = True
            else:
                print("❌ NER model not working properly")
                results['ner_model'] = False
        
        except Exception as e:
            print(f"⚠️ NER model failed: {e}")
            results['ner_model'] = False
    
    except ImportError:
        print("❌ Transformers not available - AI models cannot be tested")
        results = {'transformers_available': False}
    
    print("\n" + "=" * 50)
    return results

def test_web_scraping() -> Dict[str, bool]:
    """
    πŸ•·οΈ Test web scraping functionality
    
    Returns:
        Dict with scraping test results
    """
    results = {}
    
    print("πŸ•·οΈ Testing Web Scraping...")
    print("=" * 50)
    
    try:
        import requests
        from bs4 import BeautifulSoup
        
        # Test URLs (public, safe for testing)
        test_urls = [
            "https://httpbin.org/html",
            "https://example.com",
            "https://httpbin.org/json"
        ]
        
        successful_scrapes = 0
        
        for url in test_urls:
            try:
                headers = {
                    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
                }
                
                response = requests.get(url, headers=headers, timeout=10)
                
                if response.status_code == 200:
                    # Test HTML parsing
                    if 'html' in url:
                        soup = BeautifulSoup(response.content, 'html.parser')
                        text = soup.get_text()
                        if len(text) > 10:
                            successful_scrapes += 1
                            print(f"βœ… Successfully scraped HTML from {url}")
                    else:
                        if len(response.text) > 10:
                            successful_scrapes += 1
                            print(f"βœ… Successfully retrieved content from {url}")
                else:
                    print(f"⚠️ HTTP {response.status_code} from {url}")
            
            except Exception as e:
                print(f"❌ Failed to scrape {url}: {e}")
        
        if successful_scrapes >= 2:
            print("βœ… Web scraping functionality working")
            results['scraping_works'] = True
        else:
            print("❌ Web scraping has issues")
            results['scraping_works'] = False
        
        results['successful_scrapes'] = successful_scrapes
        results['total_tests'] = len(test_urls)
    
    except ImportError as e:
        print(f"❌ Required packages not available: {e}")
        results['scraping_works'] = False
    
    print("\n" + "=" * 50)
    return results

def test_complete_workflow() -> Dict[str, any]:
    """
    πŸ”„ Test complete dataset creation workflow
    
    Returns:
        Dict with workflow test results
    """
    results = {
        'project_creation': False,
        'source_discovery': False,
        'data_scraping': False,
        'data_processing': False,
        'data_export': False,
        'total_time': 0
    }
    
    print("πŸ”„ Testing Complete Workflow...")
    print("=" * 50)
    
    start_time = time.time()
    
    try:
        # Import the main studio class
        from app import DatasetStudio
        
        # Test 1: Initialize studio
        studio = DatasetStudio()
        print("βœ… Dataset Studio initialized")
        
        # Test 2: Create project
        project_status = studio.create_project(
            name="Test Project",
            template="sentiment_analysis",
            description="Test project for workflow validation"
        )
        
        if "βœ…" in project_status:
            print("βœ… Project creation successful")
            results['project_creation'] = True
        else:
            print("❌ Project creation failed")
            return results
        
        # Test 3: AI source discovery (if available)
        if studio.perplexity_client:
            discovery_status, sources_json = studio.discover_sources_with_ai(
                project_description="Product reviews for sentiment analysis testing",
                max_sources=5,
                search_type="general"
            )
            
            if "βœ…" in discovery_status and sources_json != "[]":
                print("βœ… AI source discovery successful")
                results['source_discovery'] = True
                
                # Extract URLs for scraping test
                test_urls = studio.extract_urls_from_sources(sources_json)
                if test_urls:
                    test_urls = test_urls[:2]  # Limit to 2 for testing
            else:
                print("⚠️ AI source discovery didn't find sources, using fallback")
                test_urls = ["https://httpbin.org/html"]
        else:
            print("⚠️ Perplexity not available, using test URLs")
            test_urls = ["https://httpbin.org/html"]
        
        # Test 4: Data scraping
        if test_urls:
            scrape_status, scraped_data = studio.scrape_urls('\n'.join(test_urls))
            
            if "βœ…" in scrape_status:
                print("βœ… Data scraping successful")
                results['data_scraping'] = True
            else:
                print("❌ Data scraping failed")
                return results
        
        # Test 5: Data processing
        if studio.scraped_data:
            process_status, processed_data = studio.process_data("sentiment_analysis")
            
            if "βœ…" in process_status:
                print("βœ… Data processing successful")
                results['data_processing'] = True
            else:
                print("⚠️ Data processing had issues but continued")
                results['data_processing'] = True  # Allow partial success
        
        # Test 6: Data export
        if studio.processed_data:
            export_status, file_path = studio.export_dataset("JSON")
            
            if "βœ…" in export_status and file_path:
                print("βœ… Data export successful")
                results['data_export'] = True
            else:
                print("❌ Data export failed")
    
    except Exception as e:
        print(f"❌ Workflow test failed: {e}")
        logger.exception("Workflow test error")
    
    results['total_time'] = time.time() - start_time
    print(f"⏱️ Total workflow time: {results['total_time']:.1f} seconds")
    
    print("\n" + "=" * 50)
    return results

def run_performance_benchmark() -> Dict[str, float]:
    """
    ⚑ Run performance benchmarks
    
    Returns:
        Dict with performance metrics
    """
    results = {}
    
    print("⚑ Running Performance Benchmarks...")
    print("=" * 50)
    
    try:
        # Test 1: API response time
        if os.getenv('PERPLEXITY_API_KEY'):
            from perplexity_client import PerplexityClient
            
            client = PerplexityClient()
            start_time = time.time()
            
            test_result = client.discover_sources(
                "Performance test query for machine learning",
                max_sources=5
            )
            
            api_time = time.time() - start_time
            results['api_response_time'] = api_time
            print(f"🧠 Perplexity API response time: {api_time:.2f}s")
        
        # Test 2: Model loading time
        try:
            from transformers import pipeline
            
            start_time = time.time()
            sentiment_analyzer = pipeline("sentiment-analysis")
            model_load_time = time.time() - start_time
            
            results['model_load_time'] = model_load_time
            print(f"πŸ€– Model loading time: {model_load_time:.2f}s")
            
            # Test 3: Processing speed
            test_texts = [
                "This is a great product!",
                "I really don't like this item.",
                "This product is okay, nothing special.",
                "Amazing quality and fast delivery!",
                "Terrible experience, would not recommend."
            ]
            
            start_time = time.time()
            for text in test_texts:
                sentiment_analyzer(text)
            processing_time = time.time() - start_time
            
            results['processing_speed'] = len(test_texts) / processing_time
            print(f"πŸš€ Processing speed: {results['processing_speed']:.1f} items/second")
        
        except ImportError:
            print("⚠️ Cannot test model performance - transformers not available")
        
        # Test 4: Memory usage (basic estimation)
        import psutil
        import os
        
        process = psutil.Process(os.getpid())
        memory_mb = process.memory_info().rss / 1024 / 1024
        results['memory_usage_mb'] = memory_mb
        print(f"πŸ’Ύ Current memory usage: {memory_mb:.1f} MB")
    
    except Exception as e:
        print(f"⚠️ Performance benchmark error: {e}")
    
    print("\n" + "=" * 50)
    return results

def generate_test_report(
    env_results: Dict,
    api_results: Dict,
    model_results: Dict,
    scraping_results: Dict,
    workflow_results: Dict,
    performance_results: Dict
) -> str:
    """
    πŸ“Š Generate comprehensive test report
    
    Returns:
        Formatted test report as string
    """
    report = []
    report.append("πŸš€ AI Dataset Studio - Test Report")
    report.append("=" * 60)
    report.append(f"πŸ“… Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
    report.append("")
    
    # Environment Summary
    report.append("πŸ” ENVIRONMENT SETUP")
    report.append("-" * 30)
    
    env_score = sum(1 for v in env_results.values() if v) / len(env_results) * 100
    report.append(f"Overall Score: {env_score:.0f}%")
    
    if env_results.get('env_perplexity_api_key'):
        report.append("βœ… Perplexity API configured")
    else:
        report.append("❌ Perplexity API not configured")
    
    required_packages = ['package_gradio', 'package_requests', 'package_pandas', 'package_beautifulsoup4']
    missing_required = [p for p in required_packages if not env_results.get(p)]
    
    if not missing_required:
        report.append("βœ… All required packages available")
    else:
        report.append(f"❌ Missing required packages: {missing_required}")
    
    report.append("")
    
    # API Summary
    report.append("🧠 PERPLEXITY AI INTEGRATION")
    report.append("-" * 30)
    
    if api_results.get('api_key_valid'):
        report.append("βœ… API key valid and working")
        
        if api_results.get('connection_successful'):
            report.append("βœ… API connection successful")
        
        if api_results.get('response_quality'):
            report.append("βœ… Response quality good")
        
        if api_results.get('rate_limiting'):
            report.append("βœ… Rate limiting active")
    else:
        report.append("❌ API integration not working")
    
    report.append("")
    
    # Models Summary
    report.append("πŸ€– AI MODELS")
    report.append("-" * 30)
    
    if model_results.get('transformers_available', True):
        working_models = sum(1 for k, v in model_results.items() if k.endswith('_model') and v)
        total_models = sum(1 for k in model_results.keys() if k.endswith('_model'))
        
        report.append(f"Working Models: {working_models}/{total_models}")
        
        if model_results.get('gpu_available'):
            report.append("βœ… GPU acceleration available")
        else:
            report.append("⚠️ CPU-only processing")
    else:
        report.append("❌ AI models not available")
    
    report.append("")
    
    # Workflow Summary
    report.append("πŸ”„ COMPLETE WORKFLOW")
    report.append("-" * 30)
    
    workflow_steps = ['project_creation', 'source_discovery', 'data_scraping', 'data_processing', 'data_export']
    working_steps = sum(1 for step in workflow_steps if workflow_results.get(step))
    
    report.append(f"Working Steps: {working_steps}/{len(workflow_steps)}")
    report.append(f"Total Time: {workflow_results.get('total_time', 0):.1f} seconds")
    
    if working_steps >= 4:
        report.append("βœ… Workflow fully functional")
    elif working_steps >= 2:
        report.append("⚠️ Workflow partially functional")
    else:
        report.append("❌ Workflow has major issues")
    
    report.append("")
    
    # Performance Summary
    report.append("⚑ PERFORMANCE METRICS")
    report.append("-" * 30)
    
    if 'api_response_time' in performance_results:
        api_time = performance_results['api_response_time']
        if api_time < 10:
            report.append(f"βœ… API response time: {api_time:.1f}s (good)")
        elif api_time < 20:
            report.append(f"⚠️ API response time: {api_time:.1f}s (acceptable)")
        else:
            report.append(f"❌ API response time: {api_time:.1f}s (slow)")
    
    if 'processing_speed' in performance_results:
        speed = performance_results['processing_speed']
        if speed > 2:
            report.append(f"βœ… Processing speed: {speed:.1f} items/sec (good)")
        elif speed > 0.5:
            report.append(f"⚠️ Processing speed: {speed:.1f} items/sec (acceptable)")
        else:
            report.append(f"❌ Processing speed: {speed:.1f} items/sec (slow)")
    
    if 'memory_usage_mb' in performance_results:
        memory = performance_results['memory_usage_mb']
        report.append(f"πŸ’Ύ Memory usage: {memory:.0f} MB")
    
    report.append("")
    
    # Overall Assessment
    report.append("🎯 OVERALL ASSESSMENT")
    report.append("-" * 30)
    
    total_score = 0
    max_score = 0
    
    # Calculate scores
    if env_results.get('env_perplexity_api_key') and env_results.get('package_gradio'):
        total_score += 25
    max_score += 25
    
    if api_results.get('api_key_valid') and api_results.get('connection_successful'):
        total_score += 25
    max_score += 25
    
    if working_steps >= 3:
        total_score += 25
    max_score += 25
    
    if model_results.get('sentiment_model', False) or not model_results.get('transformers_available', True):
        total_score += 25
    max_score += 25
    
    overall_score = (total_score / max_score) * 100 if max_score > 0 else 0
    
    if overall_score >= 80:
        status = "βœ… EXCELLENT - Ready for production use"
    elif overall_score >= 60:
        status = "⚠️ GOOD - Minor issues to address"
    elif overall_score >= 40:
        status = "πŸ”§ FAIR - Several issues need fixing"
    else:
        status = "❌ POOR - Major setup problems"
    
    report.append(f"Overall Score: {overall_score:.0f}%")
    report.append(f"Status: {status}")
    
    report.append("")
    report.append("πŸ”§ NEXT STEPS")
    report.append("-" * 30)
    
    if not env_results.get('env_perplexity_api_key'):
        report.append("1. Set PERPLEXITY_API_KEY environment variable")
    
    if not api_results.get('api_key_valid'):
        report.append("2. Verify Perplexity API key is correct")
    
    if working_steps < 3:
        report.append("3. Check error logs for workflow issues")
    
    if not model_results.get('gpu_available', False) and model_results.get('transformers_available', True):
        report.append("4. Consider upgrading to GPU hardware for better performance")
    
    if overall_score >= 80:
        report.append("πŸŽ‰ Your AI Dataset Studio is ready to create amazing datasets!")
    
    return "\n".join(report)

def main():
    """
    πŸ§ͺ Run complete test suite
    """
    print("πŸ§ͺ AI Dataset Studio - Complete Test Suite")
    print("=" * 60)
    print("This will test all components of your deployment")
    print("Please wait while tests are running...\n")
    
    # Run all tests
    env_results = test_environment_setup()
    api_results = test_perplexity_api()
    model_results = test_ai_models()
    scraping_results = test_web_scraping()
    workflow_results = test_complete_workflow()
    performance_results = run_performance_benchmark()
    
    # Generate report
    report = generate_test_report(
        env_results, api_results, model_results,
        scraping_results, workflow_results, performance_results
    )
    
    # Save report
    timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
    report_filename = f"test_report_{timestamp}.txt"
    
    try:
        with open(report_filename, 'w', encoding='utf-8') as f:
            f.write(report)
        print(f"πŸ“„ Test report saved to: {report_filename}")
    except Exception as e:
        print(f"⚠️ Could not save report to file: {e}")
    
    print("\n" + "=" * 60)
    print(report)
    print("=" * 60)
    
    return {
        'environment': env_results,
        'api': api_results,
        'models': model_results,
        'scraping': scraping_results,
        'workflow': workflow_results,
        'performance': performance_results
    }

if __name__ == "__main__":
    # Run the complete test suite
    test_results = main()