File size: 14,249 Bytes
4fc0c1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
"""
Utility functions for AI Dataset Studio
Common helpers for text processing, validation, and data manipulation
"""

import re
import hashlib
import json
import csv
import io
from typing import List, Dict, Any, Optional, Tuple, Union
from urllib.parse import urlparse, urljoin
from datetime import datetime
import logging

logger = logging.getLogger(__name__)

def clean_text(text: str, aggressive: bool = False) -> str:
    """
    Clean text content with various strategies
    
    Args:
        text: Input text to clean
        aggressive: Whether to apply aggressive cleaning
    
    Returns:
        Cleaned text
    """
    if not text:
        return ""
    
    # Basic cleaning
    text = text.strip()
    
    # Remove excessive whitespace
    text = re.sub(r'\s+', ' ', text)
    
    # Remove URLs if aggressive
    if aggressive:
        text = re.sub(r'http\S+|www\.\S+', '', text)
        text = re.sub(r'\S+@\S+', '', text)  # Email addresses
    
    # Fix common encoding issues
    text = text.replace('’', "'")
    text = text.replace('“', '"')
    text = text.replace('â€', '"')
    text = text.replace('â€"', '—')
    
    # Remove excessive punctuation
    text = re.sub(r'[!?]{3,}', '!!!', text)
    text = re.sub(r'\.{4,}', '...', text)
    
    # Clean up quotes and apostrophes
    text = re.sub(r'["""]', '"', text)
    text = re.sub(r'[''']', "'", text)
    
    return text.strip()

def extract_urls_from_text(text: str) -> List[str]:
    """Extract URLs from text content"""
    url_pattern = r'https?://(?:[-\w.])+(?:[:\d]+)?(?:/(?:[\w/_.])*(?:\?(?:[\w&=%.])*)?(?:#(?:[\w.])*)?)?'
    urls = re.findall(url_pattern, text)
    return list(set(urls))  # Remove duplicates

def validate_url(url: str) -> Tuple[bool, str]:
    """
    Validate URL format and basic security checks
    
    Returns:
        Tuple of (is_valid, error_message)
    """
    try:
        if not url or not url.strip():
            return False, "Empty URL"
        
        url = url.strip()
        
        # Basic format check
        parsed = urlparse(url)
        
        if not parsed.scheme:
            return False, "Missing scheme (http:// or https://)"
        
        if parsed.scheme not in ['http', 'https']:
            return False, f"Invalid scheme: {parsed.scheme}"
        
        if not parsed.netloc:
            return False, "Invalid domain"
        
        # Check for suspicious patterns
        suspicious_patterns = [
            r'localhost',
            r'127\.0\.0\.1',
            r'192\.168\.',
            r'10\.',
            r'172\.(1[6-9]|2[0-9]|3[01])\.'
        ]
        
        for pattern in suspicious_patterns:
            if re.search(pattern, parsed.netloc, re.IGNORECASE):
                return False, "Access to internal networks not allowed"
        
        return True, "Valid URL"
        
    except Exception as e:
        return False, f"URL validation error: {str(e)}"

def parse_urls_from_file(file_content: bytes, filename: str) -> List[str]:
    """
    Parse URLs from uploaded file content
    
    Args:
        file_content: File content as bytes
        filename: Original filename for format detection
    
    Returns:
        List of extracted URLs
    """
    try:
        # Decode content
        try:
            content = file_content.decode('utf-8')
        except UnicodeDecodeError:
            content = file_content.decode('latin-1')
        
        urls = []
        
        # Handle different file formats
        if filename.lower().endswith('.csv'):
            # Try to parse as CSV
            reader = csv.DictReader(io.StringIO(content))
            for row in reader:
                # Look for URL column (flexible naming)
                url_columns = ['url', 'URL', 'link', 'Link', 'href', 'address']
                for col in url_columns:
                    if col in row and row[col]:
                        urls.append(row[col].strip())
                        break
        else:
            # Treat as plain text (one URL per line)
            lines = content.split('\n')
            for line in lines:
                line = line.strip()
                if line and not line.startswith('#'):  # Skip comments
                    # Extract URLs from line
                    extracted = extract_urls_from_text(line)
                    if extracted:
                        urls.extend(extracted)
                    elif validate_url(line)[0]:  # Check if line itself is a URL
                        urls.append(line)
        
        # Remove duplicates while preserving order
        seen = set()
        unique_urls = []
        for url in urls:
            if url not in seen:
                seen.add(url)
                unique_urls.append(url)
        
        return unique_urls
        
    except Exception as e:
        logger.error(f"Error parsing URLs from file: {e}")
        return []

def calculate_text_similarity(text1: str, text2: str) -> float:
    """
    Calculate similarity between two texts using simple methods
    
    Returns:
        Similarity score between 0 and 1
    """
    if not text1 or not text2:
        return 0.0
    
    # Simple character-level similarity
    text1 = text1.lower().strip()
    text2 = text2.lower().strip()
    
    if text1 == text2:
        return 1.0
    
    # Jaccard similarity on words
    words1 = set(text1.split())
    words2 = set(text2.split())
    
    if not words1 and not words2:
        return 1.0
    if not words1 or not words2:
        return 0.0
    
    intersection = len(words1.intersection(words2))
    union = len(words1.union(words2))
    
    return intersection / union if union > 0 else 0.0

def detect_content_type(text: str) -> str:
    """
    Detect the type of content based on text analysis
    
    Returns:
        Content type string
    """
    if not text:
        return "empty"
    
    text_lower = text.lower()
    
    # Check for common patterns
    if any(word in text_lower for word in ['abstract:', 'introduction:', 'conclusion:', 'references:']):
        return "academic"
    elif any(word in text_lower for word in ['news', 'reported', 'according to', 'sources say']):
        return "news"
    elif any(word in text_lower for word in ['review', 'rating', 'stars', 'recommend']):
        return "review"
    elif any(word in text_lower for word in ['blog', 'posted by', 'share this']):
        return "blog"
    elif re.search(r'\b\d{1,2}[/-]\d{1,2}[/-]\d{2,4}\b', text):
        return "dated_content"
    else:
        return "general"

def extract_metadata_from_text(text: str) -> Dict[str, Any]:
    """
    Extract metadata from text content
    
    Returns:
        Dictionary of extracted metadata
    """
    metadata = {}
    
    # Extract dates
    date_patterns = [
        r'\b\d{1,2}[/-]\d{1,2}[/-]\d{2,4}\b',
        r'\b\d{4}[/-]\d{1,2}[/-]\d{1,2}\b',
        r'\b(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[a-z]* \d{1,2},? \d{4}\b'
    ]
    
    dates = []
    for pattern in date_patterns:
        dates.extend(re.findall(pattern, text, re.IGNORECASE))
    
    if dates:
        metadata['extracted_dates'] = dates[:5]  # Limit to first 5
    
    # Extract numbers and statistics
    numbers = re.findall(r'\b\d{1,3}(?:,\d{3})*(?:\.\d+)?\b', text)
    if numbers:
        metadata['numbers'] = numbers[:10]  # Limit to first 10
    
    # Extract email addresses
    emails = re.findall(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', text)
    if emails:
        metadata['emails'] = emails[:5]
    
    # Extract phone numbers (basic pattern)
    phones = re.findall(r'\b\d{3}[-.]?\d{3}[-.]?\d{4}\b', text)
    if phones:
        metadata['phones'] = phones[:5]
    
    # Extract capitalized words (potential names/entities)
    capitalized = re.findall(r'\b[A-Z][a-z]+(?:\s[A-Z][a-z]+)*\b', text)
    if capitalized:
        # Filter common words
        common_words = {'The', 'This', 'That', 'There', 'Then', 'They', 'These', 'Those'}
        filtered = [word for word in capitalized if word not in common_words]
        metadata['capitalized_terms'] = list(set(filtered))[:20]
    
    return metadata

def generate_content_hash(text: str) -> str:
    """Generate a hash for content deduplication"""
    # Normalize text for hashing
    normalized = re.sub(r'\s+', ' ', text.lower().strip())
    return hashlib.md5(normalized.encode('utf-8')).hexdigest()

def format_file_size(size_bytes: int) -> str:
    """Format file size in human readable format"""
    if size_bytes == 0:
        return "0 B"
    
    size_names = ["B", "KB", "MB", "GB"]
    i = 0
    while size_bytes >= 1024 and i < len(size_names) - 1:
        size_bytes /= 1024.0
        i += 1
    
    return f"{size_bytes:.1f} {size_names[i]}"

def estimate_reading_time(text: str, words_per_minute: int = 200) -> int:
    """Estimate reading time in minutes"""
    word_count = len(text.split())
    return max(1, round(word_count / words_per_minute))

def truncate_text(text: str, max_length: int, suffix: str = "...") -> str:
    """Truncate text to maximum length with suffix"""
    if len(text) <= max_length:
        return text
    
    return text[:max_length - len(suffix)] + suffix

def create_filename_safe_string(text: str, max_length: int = 50) -> str:
    """Create a filesystem-safe string from text"""
    # Remove/replace problematic characters
    safe_text = re.sub(r'[<>:"/\\|?*]', '_', text)
    safe_text = re.sub(r'\s+', '_', safe_text)
    safe_text = safe_text.strip('._')
    
    # Truncate if too long
    if len(safe_text) > max_length:
        safe_text = safe_text[:max_length].rstrip('_')
    
    return safe_text or "untitled"

def validate_dataset_format(data: List[Dict[str, Any]], required_fields: List[str]) -> Tuple[bool, List[str]]:
    """
    Validate dataset format against required fields
    
    Returns:
        Tuple of (is_valid, list_of_errors)
    """
    errors = []
    
    if not data:
        errors.append("Dataset is empty")
        return False, errors
    
    # Check each item
    for i, item in enumerate(data[:10]):  # Check first 10 items
        if not isinstance(item, dict):
            errors.append(f"Item {i} is not a dictionary")
            continue
        
        # Check required fields
        for field in required_fields:
            if field not in item:
                errors.append(f"Item {i} missing required field: {field}")
            elif not item[field]:  # Check for empty values
                errors.append(f"Item {i} has empty value for field: {field}")
    
    return len(errors) == 0, errors

def create_progress_message(current: int, total: int, operation: str = "Processing") -> str:
    """Create a formatted progress message"""
    percentage = (current / total * 100) if total > 0 else 0
    return f"{operation} {current}/{total} ({percentage:.1f}%)"

def sanitize_text_for_json(text: str) -> str:
    """Sanitize text for safe JSON serialization"""
    if not text:
        return ""
    
    # Replace problematic characters
    text = text.replace('\x00', '')  # Remove null bytes
    text = re.sub(r'[\x00-\x1f\x7f-\x9f]', ' ', text)  # Remove control characters
    
    return text

def extract_domain_from_url(url: str) -> str:
    """Extract domain from URL"""
    try:
        parsed = urlparse(url)
        return parsed.netloc.lower()
    except:
        return "unknown"

def analyze_text_quality(text: str) -> Dict[str, Any]:
    """
    Analyze text quality and return metrics
    
    Returns:
        Dictionary with quality metrics
    """
    if not text:
        return {'score': 0.0, 'issues': ['Empty text']}
    
    issues = []
    score = 1.0
    
    # Length checks
    word_count = len(text.split())
    if word_count < 10:
        issues.append('Too short (< 10 words)')
        score -= 0.3
    elif word_count < 50:
        score -= 0.1
    
    # Character checks
    if len(text) < 100:
        issues.append('Very short content')
        score -= 0.2
    
    # Language quality checks
    uppercase_ratio = sum(1 for c in text if c.isupper()) / len(text)
    if uppercase_ratio > 0.3:
        issues.append('Excessive uppercase')
        score -= 0.2
    
    # Punctuation checks
    sentence_endings = text.count('.') + text.count('!') + text.count('?')
    if word_count > 50 and sentence_endings < 2:
        issues.append('Few sentence endings')
        score -= 0.1
    
    # Excessive repetition check
    words = text.lower().split()
    if len(words) > 10:
        unique_words = set(words)
        if len(unique_words) / len(words) < 0.5:
            issues.append('High word repetition')
            score -= 0.2
    
    # Special character checks
    special_char_ratio = sum(1 for c in text if not c.isalnum() and not c.isspace()) / len(text)
    if special_char_ratio > 0.1:
        issues.append('Many special characters')
        score -= 0.1
    
    return {
        'score': max(0.0, score),
        'word_count': word_count,
        'char_count': len(text),
        'uppercase_ratio': uppercase_ratio,
        'special_char_ratio': special_char_ratio,
        'issues': issues
    }

# Dataset template utilities
def create_classification_example(text: str, label: str, confidence: float = 1.0) -> Dict[str, Any]:
    """Create a text classification example"""
    return {
        'text': text,
        'label': label,
        'confidence': confidence
    }

def create_ner_example(text: str, entities: List[Dict[str, Any]]) -> Dict[str, Any]:
    """Create a named entity recognition example"""
    return {
        'text': text,
        'entities': entities
    }

def create_qa_example(context: str, question: str, answer: str, answer_start: int = None) -> Dict[str, Any]:
    """Create a question answering example"""
    example = {
        'context': context,
        'question': question,
        'answer': answer
    }
    
    if answer_start is not None:
        example['answer_start'] = answer_start
    
    return example

def create_summarization_example(text: str, summary: str) -> Dict[str, Any]:
    """Create a text summarization example"""
    return {
        'text': text,
        'summary': summary
    }