AI_Powered_Web_Scraper / perplexity_client.py
MagicMeWizard's picture
Create perplexity_client.py
6b9c591 verified
"""
🧠 Perplexity AI Integration for AI Dataset Studio
Automatically discovers relevant sources based on project descriptions
"""
import os
import requests
import json
import logging
import time
import re
from typing import List, Dict, Optional, Tuple
from urllib.parse import urlparse, urljoin
from dataclasses import dataclass
from enum import Enum
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class SearchType(Enum):
"""Types of searches supported by Perplexity AI"""
GENERAL = "general"
ACADEMIC = "academic"
NEWS = "news"
SOCIAL = "social"
TECHNICAL = "technical"
@dataclass
class SourceResult:
"""Structure for individual source results"""
url: str
title: str
description: str
relevance_score: float
source_type: str
domain: str
publication_date: Optional[str] = None
author: Optional[str] = None
@dataclass
class SearchResults:
"""Container for search results"""
query: str
sources: List[SourceResult]
total_found: int
search_time: float
perplexity_response: str
suggestions: List[str]
class PerplexityClient:
"""
🧠 Perplexity AI Client for Smart Source Discovery
Features:
- Intelligent source discovery based on project descriptions
- Multiple search strategies (academic, news, technical, etc.)
- Quality filtering and relevance scoring
- Rate limiting and error handling
- Domain validation and safety checks
"""
def __init__(self, api_key: Optional[str] = None):
"""
Initialize Perplexity AI client
Args:
api_key: Perplexity API key (if not provided, will try env var)
"""
self.api_key = api_key or os.getenv('PERPLEXITY_API_KEY')
self.base_url = "https://api.perplexity.ai"
self.session = requests.Session()
# Set up headers
if self.api_key:
self.session.headers.update({
'Authorization': f'Bearer {self.api_key}',
'Content-Type': 'application/json',
'User-Agent': 'AI-Dataset-Studio/1.0'
})
# Rate limiting
self.last_request_time = 0
self.min_request_interval = 1.0 # Seconds between requests
# Configuration
self.max_retries = 3
self.timeout = 30
logger.info("🧠 Perplexity AI client initialized")
def _validate_api_key(self) -> bool:
"""Validate that API key is available and working"""
if not self.api_key:
logger.error("❌ No Perplexity API key found. Set PERPLEXITY_API_KEY environment variable.")
return False
return True
def _rate_limit(self):
"""Implement rate limiting to respect API limits"""
current_time = time.time()
time_since_last = current_time - self.last_request_time
if time_since_last < self.min_request_interval:
sleep_time = self.min_request_interval - time_since_last
logger.debug(f"⏱️ Rate limiting: sleeping {sleep_time:.2f}s")
time.sleep(sleep_time)
self.last_request_time = time.time()
def _make_request(self, payload: Dict) -> Optional[Dict]:
"""
Make API request to Perplexity with error handling
Args:
payload: Request payload
Returns:
API response or None if failed
"""
if not self._validate_api_key():
return None
self._rate_limit()
for attempt in range(self.max_retries):
try:
logger.debug(f"πŸ“‘ Making Perplexity API request (attempt {attempt + 1})")
response = self.session.post(
f"{self.base_url}/chat/completions",
json=payload,
timeout=self.timeout
)
if response.status_code == 200:
logger.debug("βœ… Perplexity API request successful")
return response.json()
elif response.status_code == 429:
logger.warning("🚦 Rate limit hit, waiting longer...")
time.sleep(2 ** attempt) # Exponential backoff
continue
else:
logger.error(f"❌ API request failed: {response.status_code} - {response.text}")
except requests.exceptions.Timeout:
logger.warning(f"⏰ Request timeout (attempt {attempt + 1})")
except requests.exceptions.RequestException as e:
logger.error(f"πŸ”Œ Request error: {str(e)}")
if attempt < self.max_retries - 1:
time.sleep(2 ** attempt) # Exponential backoff
logger.error("❌ All retry attempts failed")
return None
def discover_sources(
self,
project_description: str,
search_type: SearchType = SearchType.GENERAL,
max_sources: int = 20,
include_academic: bool = True,
include_news: bool = True,
domain_filter: Optional[List[str]] = None
) -> SearchResults:
"""
πŸ” Discover relevant sources based on project description
Args:
project_description: User's project description
search_type: Type of search to perform
max_sources: Maximum number of sources to return
include_academic: Include academic sources
include_news: Include news sources
domain_filter: Optional list of domains to focus on
Returns:
SearchResults object with discovered sources
"""
start_time = time.time()
logger.info(f"πŸ” Discovering sources for: {project_description[:100]}...")
# Build search prompt
search_prompt = self._build_search_prompt(
project_description,
search_type,
max_sources,
include_academic,
include_news,
domain_filter
)
# Prepare API payload
payload = {
"model": "llama-3.1-sonar-large-128k-online",
"messages": [
{
"role": "system",
"content": "You are an expert research assistant specializing in finding high-quality, relevant sources for AI/ML dataset creation. Always provide specific URLs, titles, and descriptions."
},
{
"role": "user",
"content": search_prompt
}
],
"max_tokens": 4000,
"temperature": 0.3,
"top_p": 0.9
}
# Make API request
response = self._make_request(payload)
if not response:
logger.error("❌ Failed to get response from Perplexity API")
return self._create_empty_results(project_description, time.time() - start_time)
# Parse response and extract sources
try:
content = response['choices'][0]['message']['content']
sources = self._parse_sources_from_response(content)
suggestions = self._extract_suggestions(content)
search_time = time.time() - start_time
logger.info(f"βœ… Found {len(sources)} sources in {search_time:.2f}s")
return SearchResults(
query=project_description,
sources=sources[:max_sources],
total_found=len(sources),
search_time=search_time,
perplexity_response=content,
suggestions=suggestions
)
except Exception as e:
logger.error(f"❌ Error parsing Perplexity response: {str(e)}")
return self._create_empty_results(project_description, time.time() - start_time)
def _build_search_prompt(
self,
project_description: str,
search_type: SearchType,
max_sources: int,
include_academic: bool,
include_news: bool,
domain_filter: Optional[List[str]]
) -> str:
"""Build optimized search prompt for Perplexity AI"""
prompt = f"""
Find {max_sources} high-quality, diverse sources for an AI/ML dataset creation project:
PROJECT DESCRIPTION: {project_description}
SEARCH REQUIREMENTS:
- Find sources with extractable text content suitable for ML training
- Prioritize sources with structured, high-quality content
- Include diverse perspectives and data types
- Focus on sources that are legally scrapable (respect robots.txt)
SEARCH TYPE: {search_type.value}
"""
if include_academic:
prompt += "\n- Include academic papers, research articles, and scholarly sources"
if include_news:
prompt += "\n- Include news articles, press releases, and journalistic content"
if domain_filter:
prompt += f"\n- Focus on these domains: {', '.join(domain_filter)}"
prompt += f"""
OUTPUT FORMAT:
For each source, provide:
1. **URL**: Direct link to the content
2. **Title**: Clear, descriptive title
3. **Description**: 2-3 sentence summary of content and why it's relevant
4. **Type**: [academic/news/blog/government/technical/forum/social]
5. **Quality Score**: 1-10 rating for dataset suitability
ADDITIONAL REQUIREMENTS:
- Verify URLs are accessible and contain substantial text
- Avoid paywalled or login-required content when possible
- Prioritize sources with consistent formatting
- Include publication dates when available
- Suggest related search terms for expanding the dataset
Please provide concrete, actionable sources that can be immediately scraped for dataset creation.
"""
return prompt
def _parse_sources_from_response(self, content: str) -> List[SourceResult]:
"""Parse source information from Perplexity AI response"""
sources = []
# Try to extract structured information
# Look for URL patterns
url_pattern = r'https?://[^\s<>"{}|\\^`\[\]]+[^\s<>"{}|\\^`\[\].,!?;:]'
# Split content into sections
sections = re.split(r'\n\s*\n', content)
for section in sections:
# Look for URLs in this section
urls = re.findall(url_pattern, section, re.IGNORECASE)
if urls:
for url in urls:
try:
# Clean URL
url = url.strip()
# Extract title (look for text before the URL or after)
title = self._extract_title_from_section(section, url)
# Extract description
description = self._extract_description_from_section(section, url)
# Determine source type
source_type = self._determine_source_type(url, section)
# Calculate relevance score (basic heuristic)
relevance_score = self._calculate_relevance_score(section, url)
# Get domain
domain = self._extract_domain(url)
# Validate URL
if self._is_valid_url(url):
source = SourceResult(
url=url,
title=title,
description=description,
relevance_score=relevance_score,
source_type=source_type,
domain=domain
)
sources.append(source)
except Exception as e:
logger.debug(f"⚠️ Error parsing source: {str(e)}")
continue
# Remove duplicates based on URL
seen_urls = set()
unique_sources = []
for source in sources:
if source.url not in seen_urls:
seen_urls.add(source.url)
unique_sources.append(source)
# Sort by relevance score
unique_sources.sort(key=lambda x: x.relevance_score, reverse=True)
return unique_sources
def _extract_title_from_section(self, section: str, url: str) -> str:
"""Extract title from section text"""
lines = section.split('\n')
for line in lines:
if url in line:
# Look for title patterns
title_patterns = [
r'\*\*([^*]+)\*\*', # **Title**
r'#{1,6}\s*([^\n]+)', # # Title
r'Title:\s*([^\n]+)', # Title: Something
r'([^:\n]+):?\s*' + re.escape(url), # Title: URL
]
for pattern in title_patterns:
match = re.search(pattern, line, re.IGNORECASE)
if match:
return match.group(1).strip()
# Fallback: use domain name
return self._extract_domain(url)
def _extract_description_from_section(self, section: str, url: str) -> str:
"""Extract description from section text"""
# Remove the URL line and look for descriptive text
lines = section.split('\n')
description_lines = []
for line in lines:
if url not in line and line.strip():
# Skip markdown headers and bullets
clean_line = re.sub(r'^[#*\-\d\.]+\s*', '', line.strip())
if len(clean_line) > 20: # Meaningful content
description_lines.append(clean_line)
description = ' '.join(description_lines)
# Truncate if too long
if len(description) > 200:
description = description[:200] + "..."
return description or "High-quality source for dataset creation"
def _determine_source_type(self, url: str, section: str) -> str:
"""Determine the type of source based on URL and context"""
url_lower = url.lower()
section_lower = section.lower()
# Academic sources
if any(domain in url_lower for domain in [
'arxiv.org', 'scholar.google', 'pubmed', 'ieee.org',
'acm.org', 'springer.com', 'elsevier.com', 'nature.com',
'sciencedirect.com', 'jstor.org'
]):
return 'academic'
# News sources
if any(domain in url_lower for domain in [
'cnn.com', 'bbc.com', 'reuters.com', 'ap.org', 'nytimes.com',
'washingtonpost.com', 'theguardian.com', 'bloomberg.com',
'techcrunch.com', 'wired.com'
]):
return 'news'
# Government sources
if '.gov' in url_lower or 'government' in section_lower:
return 'government'
# Technical/Documentation
if any(domain in url_lower for domain in [
'docs.', 'documentation', 'github.com', 'stackoverflow.com',
'medium.com', 'dev.to'
]):
return 'technical'
# Social media
if any(domain in url_lower for domain in [
'twitter.com', 'reddit.com', 'linkedin.com', 'facebook.com'
]):
return 'social'
# Default to blog
return 'blog'
def _calculate_relevance_score(self, section: str, url: str) -> float:
"""Calculate relevance score for a source (0-10)"""
score = 5.0 # Base score
section_lower = section.lower()
url_lower = url.lower()
# Boost for quality indicators
quality_indicators = [
'research', 'study', 'analysis', 'comprehensive', 'detailed',
'expert', 'professional', 'authoritative', 'peer-reviewed',
'dataset', 'data', 'machine learning', 'ai', 'artificial intelligence'
]
for indicator in quality_indicators:
if indicator in section_lower:
score += 0.5
# Boost for academic sources
if any(domain in url_lower for domain in ['arxiv.org', 'scholar.google', 'pubmed']):
score += 2.0
# Boost for government sources
if '.gov' in url_lower:
score += 1.5
# Penalize for social media
if any(domain in url_lower for domain in ['twitter.com', 'facebook.com']):
score -= 1.0
# Cap at 10
return min(score, 10.0)
def _extract_domain(self, url: str) -> str:
"""Extract domain from URL"""
try:
parsed = urlparse(url)
return parsed.netloc
except:
return "unknown"
def _is_valid_url(self, url: str) -> bool:
"""Validate URL format and basic accessibility"""
try:
parsed = urlparse(url)
return all([parsed.scheme, parsed.netloc])
except:
return False
def _extract_suggestions(self, content: str) -> List[str]:
"""Extract search suggestions from Perplexity response"""
suggestions = []
# Look for suggestion patterns
suggestion_patterns = [
r'related search terms?:?\s*([^\n]+)',
r'you might also search for:?\s*([^\n]+)',
r'additional keywords?:?\s*([^\n]+)',
r'suggestions?:?\s*([^\n]+)'
]
for pattern in suggestion_patterns:
matches = re.findall(pattern, content, re.IGNORECASE)
for match in matches:
# Split by common delimiters
terms = re.split(r'[,;|]', match)
suggestions.extend([term.strip().strip('"\'') for term in terms if term.strip()])
return suggestions[:10] # Limit to 10 suggestions
def _create_empty_results(self, query: str, search_time: float) -> SearchResults:
"""Create empty results object for failed searches"""
return SearchResults(
query=query,
sources=[],
total_found=0,
search_time=search_time,
perplexity_response="",
suggestions=[]
)
def search_with_keywords(self, keywords: List[str], search_type: SearchType = SearchType.GENERAL) -> SearchResults:
"""
πŸ”Ž Search using specific keywords
Args:
keywords: List of search keywords
search_type: Type of search to perform
Returns:
SearchResults object
"""
query = " ".join(keywords)
return self.discover_sources(
project_description=f"Find sources related to: {query}",
search_type=search_type
)
def get_domain_sources(self, domain: str, topic: str, max_sources: int = 10) -> SearchResults:
"""
🌐 Find sources from a specific domain
Args:
domain: Target domain (e.g., "nature.com")
topic: Topic to search for
max_sources: Maximum sources to return
Returns:
SearchResults object
"""
return self.discover_sources(
project_description=f"Find articles about {topic} from {domain}",
domain_filter=[domain],
max_sources=max_sources
)
def validate_sources(self, sources: List[SourceResult]) -> List[SourceResult]:
"""
βœ… Validate and filter sources for quality and accessibility
Args:
sources: List of source results to validate
Returns:
Filtered list of valid sources
"""
valid_sources = []
for source in sources:
try:
# Basic URL validation
if not self._is_valid_url(source.url):
logger.debug(f"⚠️ Invalid URL: {source.url}")
continue
# Check if domain is accessible (basic check)
domain = self._extract_domain(source.url)
if not domain or domain == "unknown":
logger.debug(f"⚠️ Unknown domain: {source.url}")
continue
# Quality score threshold
if source.relevance_score < 3.0:
logger.debug(f"⚠️ Low quality score: {source.url}")
continue
valid_sources.append(source)
except Exception as e:
logger.debug(f"⚠️ Error validating source {source.url}: {str(e)}")
continue
logger.info(f"βœ… Validated {len(valid_sources)} out of {len(sources)} sources")
return valid_sources
def export_sources(self, results: SearchResults, format: str = "json") -> str:
"""
πŸ“„ Export search results to various formats
Args:
results: SearchResults object to export
format: Export format ("json", "csv", "markdown")
Returns:
Exported data as string
"""
if format.lower() == "json":
return self._export_json(results)
elif format.lower() == "csv":
return self._export_csv(results)
elif format.lower() == "markdown":
return self._export_markdown(results)
else:
raise ValueError(f"Unsupported export format: {format}")
def _export_json(self, results: SearchResults) -> str:
"""Export results as JSON"""
data = {
"query": results.query,
"total_found": results.total_found,
"search_time": results.search_time,
"sources": [
{
"url": source.url,
"title": source.title,
"description": source.description,
"relevance_score": source.relevance_score,
"source_type": source.source_type,
"domain": source.domain,
"publication_date": source.publication_date,
"author": source.author
}
for source in results.sources
],
"suggestions": results.suggestions
}
return json.dumps(data, indent=2)
def _export_csv(self, results: SearchResults) -> str:
"""Export results as CSV"""
import csv
from io import StringIO
output = StringIO()
writer = csv.writer(output)
# Write header
writer.writerow([
"URL", "Title", "Description", "Relevance Score",
"Source Type", "Domain", "Publication Date", "Author"
])
# Write data
for source in results.sources:
writer.writerow([
source.url,
source.title,
source.description,
source.relevance_score,
source.source_type,
source.domain,
source.publication_date or "",
source.author or ""
])
return output.getvalue()
def _export_markdown(self, results: SearchResults) -> str:
"""Export results as Markdown"""
md = f"# Search Results for: {results.query}\n\n"
md += f"**Total Sources Found:** {results.total_found}\n"
md += f"**Search Time:** {results.search_time:.2f} seconds\n\n"
md += "## Sources\n\n"
for i, source in enumerate(results.sources, 1):
md += f"### {i}. {source.title}\n\n"
md += f"**URL:** {source.url}\n"
md += f"**Type:** {source.source_type}\n"
md += f"**Domain:** {source.domain}\n"
md += f"**Relevance Score:** {source.relevance_score}/10\n"
md += f"**Description:** {source.description}\n\n"
if results.suggestions:
md += "## Related Search Suggestions\n\n"
for suggestion in results.suggestions:
md += f"- {suggestion}\n"
return md
# Example usage and testing functions
def test_perplexity_client():
"""Test function for Perplexity client"""
client = PerplexityClient()
if not client._validate_api_key():
print("❌ No API key found. Set PERPLEXITY_API_KEY environment variable.")
return
# Test search
results = client.discover_sources(
project_description="Create a dataset for sentiment analysis of product reviews",
search_type=SearchType.GENERAL,
max_sources=10
)
print(f"πŸ” Found {len(results.sources)} sources")
for source in results.sources[:3]:
print(f" - {source.title}: {source.url}")
# Test export
json_export = client.export_sources(results, "json")
print(f"πŸ“„ JSON export: {len(json_export)} characters")
if __name__ == "__main__":
# Test the client
test_perplexity_client()