Delete utils.py
Browse files
utils.py
DELETED
@@ -1,462 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
Utility functions for AI Dataset Studio
|
3 |
-
Common helpers for text processing, validation, and data manipulation
|
4 |
-
"""
|
5 |
-
|
6 |
-
import re
|
7 |
-
import hashlib
|
8 |
-
import json
|
9 |
-
import csv
|
10 |
-
import io
|
11 |
-
from typing import List, Dict, Any, Optional, Tuple, Union
|
12 |
-
from urllib.parse import urlparse, urljoin
|
13 |
-
from datetime import datetime
|
14 |
-
import logging
|
15 |
-
|
16 |
-
logger = logging.getLogger(__name__)
|
17 |
-
|
18 |
-
def clean_text(text: str, aggressive: bool = False) -> str:
|
19 |
-
"""
|
20 |
-
Clean text content with various strategies
|
21 |
-
|
22 |
-
Args:
|
23 |
-
text: Input text to clean
|
24 |
-
aggressive: Whether to apply aggressive cleaning
|
25 |
-
|
26 |
-
Returns:
|
27 |
-
Cleaned text
|
28 |
-
"""
|
29 |
-
if not text:
|
30 |
-
return ""
|
31 |
-
|
32 |
-
# Basic cleaning
|
33 |
-
text = text.strip()
|
34 |
-
|
35 |
-
# Remove excessive whitespace
|
36 |
-
text = re.sub(r'\s+', ' ', text)
|
37 |
-
|
38 |
-
# Remove URLs if aggressive
|
39 |
-
if aggressive:
|
40 |
-
text = re.sub(r'http\S+|www\.\S+', '', text)
|
41 |
-
text = re.sub(r'\S+@\S+', '', text) # Email addresses
|
42 |
-
|
43 |
-
# Fix common encoding issues
|
44 |
-
text = text.replace('’', "'")
|
45 |
-
text = text.replace('“', '"')
|
46 |
-
text = text.replace('â€', '"')
|
47 |
-
text = text.replace('â€"', '—')
|
48 |
-
|
49 |
-
# Remove excessive punctuation
|
50 |
-
text = re.sub(r'[!?]{3,}', '!!!', text)
|
51 |
-
text = re.sub(r'\.{4,}', '...', text)
|
52 |
-
|
53 |
-
# Clean up quotes and apostrophes
|
54 |
-
text = re.sub(r'["""]', '"', text)
|
55 |
-
text = re.sub(r'[''']', "'", text)
|
56 |
-
|
57 |
-
return text.strip()
|
58 |
-
|
59 |
-
def extract_urls_from_text(text: str) -> List[str]:
|
60 |
-
"""Extract URLs from text content"""
|
61 |
-
url_pattern = r'https?://(?:[-\w.])+(?:[:\d]+)?(?:/(?:[\w/_.])*(?:\?(?:[\w&=%.])*)?(?:#(?:[\w.])*)?)?'
|
62 |
-
urls = re.findall(url_pattern, text)
|
63 |
-
return list(set(urls)) # Remove duplicates
|
64 |
-
|
65 |
-
def validate_url(url: str) -> Tuple[bool, str]:
|
66 |
-
"""
|
67 |
-
Validate URL format and basic security checks
|
68 |
-
|
69 |
-
Returns:
|
70 |
-
Tuple of (is_valid, error_message)
|
71 |
-
"""
|
72 |
-
try:
|
73 |
-
if not url or not url.strip():
|
74 |
-
return False, "Empty URL"
|
75 |
-
|
76 |
-
url = url.strip()
|
77 |
-
|
78 |
-
# Basic format check
|
79 |
-
parsed = urlparse(url)
|
80 |
-
|
81 |
-
if not parsed.scheme:
|
82 |
-
return False, "Missing scheme (http:// or https://)"
|
83 |
-
|
84 |
-
if parsed.scheme not in ['http', 'https']:
|
85 |
-
return False, f"Invalid scheme: {parsed.scheme}"
|
86 |
-
|
87 |
-
if not parsed.netloc:
|
88 |
-
return False, "Invalid domain"
|
89 |
-
|
90 |
-
# Check for suspicious patterns
|
91 |
-
suspicious_patterns = [
|
92 |
-
r'localhost',
|
93 |
-
r'127\.0\.0\.1',
|
94 |
-
r'192\.168\.',
|
95 |
-
r'10\.',
|
96 |
-
r'172\.(1[6-9]|2[0-9]|3[01])\.'
|
97 |
-
]
|
98 |
-
|
99 |
-
for pattern in suspicious_patterns:
|
100 |
-
if re.search(pattern, parsed.netloc, re.IGNORECASE):
|
101 |
-
return False, "Access to internal networks not allowed"
|
102 |
-
|
103 |
-
return True, "Valid URL"
|
104 |
-
|
105 |
-
except Exception as e:
|
106 |
-
return False, f"URL validation error: {str(e)}"
|
107 |
-
|
108 |
-
def parse_urls_from_file(file_content: bytes, filename: str) -> List[str]:
|
109 |
-
"""
|
110 |
-
Parse URLs from uploaded file content
|
111 |
-
|
112 |
-
Args:
|
113 |
-
file_content: File content as bytes
|
114 |
-
filename: Original filename for format detection
|
115 |
-
|
116 |
-
Returns:
|
117 |
-
List of extracted URLs
|
118 |
-
"""
|
119 |
-
try:
|
120 |
-
# Decode content
|
121 |
-
try:
|
122 |
-
content = file_content.decode('utf-8')
|
123 |
-
except UnicodeDecodeError:
|
124 |
-
content = file_content.decode('latin-1')
|
125 |
-
|
126 |
-
urls = []
|
127 |
-
|
128 |
-
# Handle different file formats
|
129 |
-
if filename.lower().endswith('.csv'):
|
130 |
-
# Try to parse as CSV
|
131 |
-
reader = csv.DictReader(io.StringIO(content))
|
132 |
-
for row in reader:
|
133 |
-
# Look for URL column (flexible naming)
|
134 |
-
url_columns = ['url', 'URL', 'link', 'Link', 'href', 'address']
|
135 |
-
for col in url_columns:
|
136 |
-
if col in row and row[col]:
|
137 |
-
urls.append(row[col].strip())
|
138 |
-
break
|
139 |
-
else:
|
140 |
-
# Treat as plain text (one URL per line)
|
141 |
-
lines = content.split('\n')
|
142 |
-
for line in lines:
|
143 |
-
line = line.strip()
|
144 |
-
if line and not line.startswith('#'): # Skip comments
|
145 |
-
# Extract URLs from line
|
146 |
-
extracted = extract_urls_from_text(line)
|
147 |
-
if extracted:
|
148 |
-
urls.extend(extracted)
|
149 |
-
elif validate_url(line)[0]: # Check if line itself is a URL
|
150 |
-
urls.append(line)
|
151 |
-
|
152 |
-
# Remove duplicates while preserving order
|
153 |
-
seen = set()
|
154 |
-
unique_urls = []
|
155 |
-
for url in urls:
|
156 |
-
if url not in seen:
|
157 |
-
seen.add(url)
|
158 |
-
unique_urls.append(url)
|
159 |
-
|
160 |
-
return unique_urls
|
161 |
-
|
162 |
-
except Exception as e:
|
163 |
-
logger.error(f"Error parsing URLs from file: {e}")
|
164 |
-
return []
|
165 |
-
|
166 |
-
def calculate_text_similarity(text1: str, text2: str) -> float:
|
167 |
-
"""
|
168 |
-
Calculate similarity between two texts using simple methods
|
169 |
-
|
170 |
-
Returns:
|
171 |
-
Similarity score between 0 and 1
|
172 |
-
"""
|
173 |
-
if not text1 or not text2:
|
174 |
-
return 0.0
|
175 |
-
|
176 |
-
# Simple character-level similarity
|
177 |
-
text1 = text1.lower().strip()
|
178 |
-
text2 = text2.lower().strip()
|
179 |
-
|
180 |
-
if text1 == text2:
|
181 |
-
return 1.0
|
182 |
-
|
183 |
-
# Jaccard similarity on words
|
184 |
-
words1 = set(text1.split())
|
185 |
-
words2 = set(text2.split())
|
186 |
-
|
187 |
-
if not words1 and not words2:
|
188 |
-
return 1.0
|
189 |
-
if not words1 or not words2:
|
190 |
-
return 0.0
|
191 |
-
|
192 |
-
intersection = len(words1.intersection(words2))
|
193 |
-
union = len(words1.union(words2))
|
194 |
-
|
195 |
-
return intersection / union if union > 0 else 0.0
|
196 |
-
|
197 |
-
def detect_content_type(text: str) -> str:
|
198 |
-
"""
|
199 |
-
Detect the type of content based on text analysis
|
200 |
-
|
201 |
-
Returns:
|
202 |
-
Content type string
|
203 |
-
"""
|
204 |
-
if not text:
|
205 |
-
return "empty"
|
206 |
-
|
207 |
-
text_lower = text.lower()
|
208 |
-
|
209 |
-
# Check for common patterns
|
210 |
-
if any(word in text_lower for word in ['abstract:', 'introduction:', 'conclusion:', 'references:']):
|
211 |
-
return "academic"
|
212 |
-
elif any(word in text_lower for word in ['news', 'reported', 'according to', 'sources say']):
|
213 |
-
return "news"
|
214 |
-
elif any(word in text_lower for word in ['review', 'rating', 'stars', 'recommend']):
|
215 |
-
return "review"
|
216 |
-
elif any(word in text_lower for word in ['blog', 'posted by', 'share this']):
|
217 |
-
return "blog"
|
218 |
-
elif re.search(r'\b\d{1,2}[/-]\d{1,2}[/-]\d{2,4}\b', text):
|
219 |
-
return "dated_content"
|
220 |
-
else:
|
221 |
-
return "general"
|
222 |
-
|
223 |
-
def extract_metadata_from_text(text: str) -> Dict[str, Any]:
|
224 |
-
"""
|
225 |
-
Extract metadata from text content
|
226 |
-
|
227 |
-
Returns:
|
228 |
-
Dictionary of extracted metadata
|
229 |
-
"""
|
230 |
-
metadata = {}
|
231 |
-
|
232 |
-
# Extract dates
|
233 |
-
date_patterns = [
|
234 |
-
r'\b\d{1,2}[/-]\d{1,2}[/-]\d{2,4}\b',
|
235 |
-
r'\b\d{4}[/-]\d{1,2}[/-]\d{1,2}\b',
|
236 |
-
r'\b(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[a-z]* \d{1,2},? \d{4}\b'
|
237 |
-
]
|
238 |
-
|
239 |
-
dates = []
|
240 |
-
for pattern in date_patterns:
|
241 |
-
dates.extend(re.findall(pattern, text, re.IGNORECASE))
|
242 |
-
|
243 |
-
if dates:
|
244 |
-
metadata['extracted_dates'] = dates[:5] # Limit to first 5
|
245 |
-
|
246 |
-
# Extract numbers and statistics
|
247 |
-
numbers = re.findall(r'\b\d{1,3}(?:,\d{3})*(?:\.\d+)?\b', text)
|
248 |
-
if numbers:
|
249 |
-
metadata['numbers'] = numbers[:10] # Limit to first 10
|
250 |
-
|
251 |
-
# Extract email addresses
|
252 |
-
emails = re.findall(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', text)
|
253 |
-
if emails:
|
254 |
-
metadata['emails'] = emails[:5]
|
255 |
-
|
256 |
-
# Extract phone numbers (basic pattern)
|
257 |
-
phones = re.findall(r'\b\d{3}[-.]?\d{3}[-.]?\d{4}\b', text)
|
258 |
-
if phones:
|
259 |
-
metadata['phones'] = phones[:5]
|
260 |
-
|
261 |
-
# Extract capitalized words (potential names/entities)
|
262 |
-
capitalized = re.findall(r'\b[A-Z][a-z]+(?:\s[A-Z][a-z]+)*\b', text)
|
263 |
-
if capitalized:
|
264 |
-
# Filter common words
|
265 |
-
common_words = {'The', 'This', 'That', 'There', 'Then', 'They', 'These', 'Those'}
|
266 |
-
filtered = [word for word in capitalized if word not in common_words]
|
267 |
-
metadata['capitalized_terms'] = list(set(filtered))[:20]
|
268 |
-
|
269 |
-
return metadata
|
270 |
-
|
271 |
-
def generate_content_hash(text: str) -> str:
|
272 |
-
"""Generate a hash for content deduplication"""
|
273 |
-
# Normalize text for hashing
|
274 |
-
normalized = re.sub(r'\s+', ' ', text.lower().strip())
|
275 |
-
return hashlib.md5(normalized.encode('utf-8')).hexdigest()
|
276 |
-
|
277 |
-
def format_file_size(size_bytes: int) -> str:
|
278 |
-
"""Format file size in human readable format"""
|
279 |
-
if size_bytes == 0:
|
280 |
-
return "0 B"
|
281 |
-
|
282 |
-
size_names = ["B", "KB", "MB", "GB"]
|
283 |
-
i = 0
|
284 |
-
while size_bytes >= 1024 and i < len(size_names) - 1:
|
285 |
-
size_bytes /= 1024.0
|
286 |
-
i += 1
|
287 |
-
|
288 |
-
return f"{size_bytes:.1f} {size_names[i]}"
|
289 |
-
|
290 |
-
def estimate_reading_time(text: str, words_per_minute: int = 200) -> int:
|
291 |
-
"""Estimate reading time in minutes"""
|
292 |
-
word_count = len(text.split())
|
293 |
-
return max(1, round(word_count / words_per_minute))
|
294 |
-
|
295 |
-
def truncate_text(text: str, max_length: int, suffix: str = "...") -> str:
|
296 |
-
"""Truncate text to maximum length with suffix"""
|
297 |
-
if len(text) <= max_length:
|
298 |
-
return text
|
299 |
-
|
300 |
-
return text[:max_length - len(suffix)] + suffix
|
301 |
-
|
302 |
-
def create_filename_safe_string(text: str, max_length: int = 50) -> str:
|
303 |
-
"""Create a filesystem-safe string from text"""
|
304 |
-
# Remove/replace problematic characters
|
305 |
-
safe_text = re.sub(r'[<>:"/\\|?*]', '_', text)
|
306 |
-
safe_text = re.sub(r'\s+', '_', safe_text)
|
307 |
-
safe_text = safe_text.strip('._')
|
308 |
-
|
309 |
-
# Truncate if too long
|
310 |
-
if len(safe_text) > max_length:
|
311 |
-
safe_text = safe_text[:max_length].rstrip('_')
|
312 |
-
|
313 |
-
return safe_text or "untitled"
|
314 |
-
|
315 |
-
def validate_dataset_format(data: List[Dict[str, Any]], required_fields: List[str]) -> Tuple[bool, List[str]]:
|
316 |
-
"""
|
317 |
-
Validate dataset format against required fields
|
318 |
-
|
319 |
-
Returns:
|
320 |
-
Tuple of (is_valid, list_of_errors)
|
321 |
-
"""
|
322 |
-
errors = []
|
323 |
-
|
324 |
-
if not data:
|
325 |
-
errors.append("Dataset is empty")
|
326 |
-
return False, errors
|
327 |
-
|
328 |
-
# Check each item
|
329 |
-
for i, item in enumerate(data[:10]): # Check first 10 items
|
330 |
-
if not isinstance(item, dict):
|
331 |
-
errors.append(f"Item {i} is not a dictionary")
|
332 |
-
continue
|
333 |
-
|
334 |
-
# Check required fields
|
335 |
-
for field in required_fields:
|
336 |
-
if field not in item:
|
337 |
-
errors.append(f"Item {i} missing required field: {field}")
|
338 |
-
elif not item[field]: # Check for empty values
|
339 |
-
errors.append(f"Item {i} has empty value for field: {field}")
|
340 |
-
|
341 |
-
return len(errors) == 0, errors
|
342 |
-
|
343 |
-
def create_progress_message(current: int, total: int, operation: str = "Processing") -> str:
|
344 |
-
"""Create a formatted progress message"""
|
345 |
-
percentage = (current / total * 100) if total > 0 else 0
|
346 |
-
return f"{operation} {current}/{total} ({percentage:.1f}%)"
|
347 |
-
|
348 |
-
def sanitize_text_for_json(text: str) -> str:
|
349 |
-
"""Sanitize text for safe JSON serialization"""
|
350 |
-
if not text:
|
351 |
-
return ""
|
352 |
-
|
353 |
-
# Replace problematic characters
|
354 |
-
text = text.replace('\x00', '') # Remove null bytes
|
355 |
-
text = re.sub(r'[\x00-\x1f\x7f-\x9f]', ' ', text) # Remove control characters
|
356 |
-
|
357 |
-
return text
|
358 |
-
|
359 |
-
def extract_domain_from_url(url: str) -> str:
|
360 |
-
"""Extract domain from URL"""
|
361 |
-
try:
|
362 |
-
parsed = urlparse(url)
|
363 |
-
return parsed.netloc.lower()
|
364 |
-
except:
|
365 |
-
return "unknown"
|
366 |
-
|
367 |
-
def analyze_text_quality(text: str) -> Dict[str, Any]:
|
368 |
-
"""
|
369 |
-
Analyze text quality and return metrics
|
370 |
-
|
371 |
-
Returns:
|
372 |
-
Dictionary with quality metrics
|
373 |
-
"""
|
374 |
-
if not text:
|
375 |
-
return {'score': 0.0, 'issues': ['Empty text']}
|
376 |
-
|
377 |
-
issues = []
|
378 |
-
score = 1.0
|
379 |
-
|
380 |
-
# Length checks
|
381 |
-
word_count = len(text.split())
|
382 |
-
if word_count < 10:
|
383 |
-
issues.append('Too short (< 10 words)')
|
384 |
-
score -= 0.3
|
385 |
-
elif word_count < 50:
|
386 |
-
score -= 0.1
|
387 |
-
|
388 |
-
# Character checks
|
389 |
-
if len(text) < 100:
|
390 |
-
issues.append('Very short content')
|
391 |
-
score -= 0.2
|
392 |
-
|
393 |
-
# Language quality checks
|
394 |
-
uppercase_ratio = sum(1 for c in text if c.isupper()) / len(text)
|
395 |
-
if uppercase_ratio > 0.3:
|
396 |
-
issues.append('Excessive uppercase')
|
397 |
-
score -= 0.2
|
398 |
-
|
399 |
-
# Punctuation checks
|
400 |
-
sentence_endings = text.count('.') + text.count('!') + text.count('?')
|
401 |
-
if word_count > 50 and sentence_endings < 2:
|
402 |
-
issues.append('Few sentence endings')
|
403 |
-
score -= 0.1
|
404 |
-
|
405 |
-
# Excessive repetition check
|
406 |
-
words = text.lower().split()
|
407 |
-
if len(words) > 10:
|
408 |
-
unique_words = set(words)
|
409 |
-
if len(unique_words) / len(words) < 0.5:
|
410 |
-
issues.append('High word repetition')
|
411 |
-
score -= 0.2
|
412 |
-
|
413 |
-
# Special character checks
|
414 |
-
special_char_ratio = sum(1 for c in text if not c.isalnum() and not c.isspace()) / len(text)
|
415 |
-
if special_char_ratio > 0.1:
|
416 |
-
issues.append('Many special characters')
|
417 |
-
score -= 0.1
|
418 |
-
|
419 |
-
return {
|
420 |
-
'score': max(0.0, score),
|
421 |
-
'word_count': word_count,
|
422 |
-
'char_count': len(text),
|
423 |
-
'uppercase_ratio': uppercase_ratio,
|
424 |
-
'special_char_ratio': special_char_ratio,
|
425 |
-
'issues': issues
|
426 |
-
}
|
427 |
-
|
428 |
-
# Dataset template utilities
|
429 |
-
def create_classification_example(text: str, label: str, confidence: float = 1.0) -> Dict[str, Any]:
|
430 |
-
"""Create a text classification example"""
|
431 |
-
return {
|
432 |
-
'text': text,
|
433 |
-
'label': label,
|
434 |
-
'confidence': confidence
|
435 |
-
}
|
436 |
-
|
437 |
-
def create_ner_example(text: str, entities: List[Dict[str, Any]]) -> Dict[str, Any]:
|
438 |
-
"""Create a named entity recognition example"""
|
439 |
-
return {
|
440 |
-
'text': text,
|
441 |
-
'entities': entities
|
442 |
-
}
|
443 |
-
|
444 |
-
def create_qa_example(context: str, question: str, answer: str, answer_start: int = None) -> Dict[str, Any]:
|
445 |
-
"""Create a question answering example"""
|
446 |
-
example = {
|
447 |
-
'context': context,
|
448 |
-
'question': question,
|
449 |
-
'answer': answer
|
450 |
-
}
|
451 |
-
|
452 |
-
if answer_start is not None:
|
453 |
-
example['answer_start'] = answer_start
|
454 |
-
|
455 |
-
return example
|
456 |
-
|
457 |
-
def create_summarization_example(text: str, summary: str) -> Dict[str, Any]:
|
458 |
-
"""Create a text summarization example"""
|
459 |
-
return {
|
460 |
-
'text': text,
|
461 |
-
'summary': summary
|
462 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|