Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,701 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
AI-Powered Web Scraper - app.py
|
3 |
+
Professional-grade web content extraction and AI summarization tool for Hugging Face Spaces
|
4 |
+
"""
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import requests
|
8 |
+
from bs4 import BeautifulSoup
|
9 |
+
from urllib.parse import urljoin, urlparse
|
10 |
+
import pandas as pd
|
11 |
+
from datetime import datetime
|
12 |
+
import json
|
13 |
+
import re
|
14 |
+
import time
|
15 |
+
from typing import List, Dict, Optional, Tuple
|
16 |
+
import logging
|
17 |
+
from pathlib import Path
|
18 |
+
import os
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from transformers import pipeline
|
21 |
+
import nltk
|
22 |
+
from nltk.tokenize import sent_tokenize
|
23 |
+
import asyncio
|
24 |
+
import aiohttp
|
25 |
+
from concurrent.futures import ThreadPoolExecutor
|
26 |
+
import hashlib
|
27 |
+
|
28 |
+
# Download required NLTK data
|
29 |
+
try:
|
30 |
+
nltk.data.find('tokenizers/punkt')
|
31 |
+
except LookupError:
|
32 |
+
nltk.download('punkt', quiet=True)
|
33 |
+
|
34 |
+
# Configure logging
|
35 |
+
logging.basicConfig(level=logging.INFO)
|
36 |
+
logger = logging.getLogger(__name__)
|
37 |
+
|
38 |
+
@dataclass
|
39 |
+
class ScrapedContent:
|
40 |
+
"""Data class for scraped content with metadata"""
|
41 |
+
url: str
|
42 |
+
title: str
|
43 |
+
content: str
|
44 |
+
summary: str
|
45 |
+
word_count: int
|
46 |
+
reading_time: int
|
47 |
+
extracted_at: str
|
48 |
+
author: Optional[str] = None
|
49 |
+
publish_date: Optional[str] = None
|
50 |
+
meta_description: Optional[str] = None
|
51 |
+
keywords: List[str] = None
|
52 |
+
|
53 |
+
class SecurityValidator:
|
54 |
+
"""Security validation for URLs and content"""
|
55 |
+
|
56 |
+
ALLOWED_SCHEMES = {'http', 'https'}
|
57 |
+
BLOCKED_DOMAINS = {
|
58 |
+
'localhost', '127.0.0.1', '0.0.0.0',
|
59 |
+
'192.168.', '10.', '172.16.', '172.17.',
|
60 |
+
'172.18.', '172.19.', '172.20.', '172.21.',
|
61 |
+
'172.22.', '172.23.', '172.24.', '172.25.',
|
62 |
+
'172.26.', '172.27.', '172.28.', '172.29.',
|
63 |
+
'172.30.', '172.31.'
|
64 |
+
}
|
65 |
+
|
66 |
+
@classmethod
|
67 |
+
def validate_url(cls, url: str) -> Tuple[bool, str]:
|
68 |
+
"""Validate URL for security concerns"""
|
69 |
+
try:
|
70 |
+
parsed = urlparse(url)
|
71 |
+
|
72 |
+
# Check scheme
|
73 |
+
if parsed.scheme not in cls.ALLOWED_SCHEMES:
|
74 |
+
return False, f"Invalid scheme: {parsed.scheme}. Only HTTP/HTTPS allowed."
|
75 |
+
|
76 |
+
# Check for blocked domains
|
77 |
+
hostname = parsed.hostname or ''
|
78 |
+
if any(blocked in hostname for blocked in cls.BLOCKED_DOMAINS):
|
79 |
+
return False, "Access to internal/local networks is not allowed."
|
80 |
+
|
81 |
+
# Basic malformed URL check
|
82 |
+
if not parsed.netloc:
|
83 |
+
return False, "Invalid URL format."
|
84 |
+
|
85 |
+
return True, "URL is valid."
|
86 |
+
|
87 |
+
except Exception as e:
|
88 |
+
return False, f"URL validation error: {str(e)}"
|
89 |
+
|
90 |
+
class RobotsTxtChecker:
|
91 |
+
"""Check robots.txt compliance"""
|
92 |
+
|
93 |
+
@staticmethod
|
94 |
+
def can_fetch(url: str, user_agent: str = "*") -> bool:
|
95 |
+
"""Check if URL can be fetched according to robots.txt"""
|
96 |
+
try:
|
97 |
+
parsed_url = urlparse(url)
|
98 |
+
robots_url = f"{parsed_url.scheme}://{parsed_url.netloc}/robots.txt"
|
99 |
+
|
100 |
+
response = requests.get(robots_url, timeout=5)
|
101 |
+
if response.status_code == 200:
|
102 |
+
# Simple robots.txt parsing (basic implementation)
|
103 |
+
lines = response.text.split('\n')
|
104 |
+
user_agent_section = False
|
105 |
+
|
106 |
+
for line in lines:
|
107 |
+
line = line.strip()
|
108 |
+
if line.startswith('User-agent:'):
|
109 |
+
agent = line.split(':', 1)[1].strip()
|
110 |
+
user_agent_section = agent == '*' or agent.lower() == user_agent.lower()
|
111 |
+
elif user_agent_section and line.startswith('Disallow:'):
|
112 |
+
disallowed = line.split(':', 1)[1].strip()
|
113 |
+
if disallowed and url.endswith(disallowed):
|
114 |
+
return False
|
115 |
+
|
116 |
+
return True
|
117 |
+
|
118 |
+
except Exception:
|
119 |
+
# If robots.txt can't be fetched, assume allowed
|
120 |
+
return True
|
121 |
+
|
122 |
+
class ContentExtractor:
|
123 |
+
"""Advanced content extraction with multiple strategies"""
|
124 |
+
|
125 |
+
def __init__(self):
|
126 |
+
self.session = requests.Session()
|
127 |
+
self.session.headers.update({
|
128 |
+
'User-Agent': 'Mozilla/5.0 (compatible; AI-WebScraper/1.0; Research Tool)',
|
129 |
+
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
|
130 |
+
'Accept-Language': 'en-US,en;q=0.5',
|
131 |
+
'Accept-Encoding': 'gzip, deflate',
|
132 |
+
'Connection': 'keep-alive',
|
133 |
+
'Upgrade-Insecure-Requests': '1',
|
134 |
+
})
|
135 |
+
|
136 |
+
def extract_content(self, url: str) -> Optional[ScrapedContent]:
|
137 |
+
"""Extract content from URL with robust error handling"""
|
138 |
+
try:
|
139 |
+
# Security validation
|
140 |
+
is_valid, validation_msg = SecurityValidator.validate_url(url)
|
141 |
+
if not is_valid:
|
142 |
+
raise ValueError(f"Security validation failed: {validation_msg}")
|
143 |
+
|
144 |
+
# Check robots.txt
|
145 |
+
if not RobotsTxtChecker.can_fetch(url):
|
146 |
+
raise ValueError("robots.txt disallows scraping this URL")
|
147 |
+
|
148 |
+
# Fetch content
|
149 |
+
response = self.session.get(url, timeout=15)
|
150 |
+
response.raise_for_status()
|
151 |
+
|
152 |
+
# Parse HTML
|
153 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
154 |
+
|
155 |
+
# Extract metadata
|
156 |
+
title = self._extract_title(soup)
|
157 |
+
author = self._extract_author(soup)
|
158 |
+
publish_date = self._extract_publish_date(soup)
|
159 |
+
meta_description = self._extract_meta_description(soup)
|
160 |
+
|
161 |
+
# Extract main content
|
162 |
+
content = self._extract_main_content(soup)
|
163 |
+
|
164 |
+
if not content or len(content.strip()) < 100:
|
165 |
+
raise ValueError("Insufficient content extracted")
|
166 |
+
|
167 |
+
# Calculate metrics
|
168 |
+
word_count = len(content.split())
|
169 |
+
reading_time = max(1, word_count // 200) # Average reading speed
|
170 |
+
|
171 |
+
# Extract keywords
|
172 |
+
keywords = self._extract_keywords(content)
|
173 |
+
|
174 |
+
return ScrapedContent(
|
175 |
+
url=url,
|
176 |
+
title=title,
|
177 |
+
content=content,
|
178 |
+
summary="", # Will be filled by AI summarizer
|
179 |
+
word_count=word_count,
|
180 |
+
reading_time=reading_time,
|
181 |
+
extracted_at=datetime.now().isoformat(),
|
182 |
+
author=author,
|
183 |
+
publish_date=publish_date,
|
184 |
+
meta_description=meta_description,
|
185 |
+
keywords=keywords
|
186 |
+
)
|
187 |
+
|
188 |
+
except Exception as e:
|
189 |
+
logger.error(f"Content extraction failed for {url}: {str(e)}")
|
190 |
+
raise
|
191 |
+
|
192 |
+
def _extract_title(self, soup: BeautifulSoup) -> str:
|
193 |
+
"""Extract page title with fallbacks"""
|
194 |
+
# Try meta og:title first
|
195 |
+
og_title = soup.find('meta', property='og:title')
|
196 |
+
if og_title and og_title.get('content'):
|
197 |
+
return og_title['content'].strip()
|
198 |
+
|
199 |
+
# Try regular title tag
|
200 |
+
title_tag = soup.find('title')
|
201 |
+
if title_tag:
|
202 |
+
return title_tag.get_text().strip()
|
203 |
+
|
204 |
+
# Try h1 as fallback
|
205 |
+
h1_tag = soup.find('h1')
|
206 |
+
if h1_tag:
|
207 |
+
return h1_tag.get_text().strip()
|
208 |
+
|
209 |
+
return "No title found"
|
210 |
+
|
211 |
+
def _extract_author(self, soup: BeautifulSoup) -> Optional[str]:
|
212 |
+
"""Extract author information"""
|
213 |
+
# Try multiple selectors for author
|
214 |
+
author_selectors = [
|
215 |
+
'meta[name="author"]',
|
216 |
+
'meta[property="article:author"]',
|
217 |
+
'.author',
|
218 |
+
'.byline',
|
219 |
+
'[rel="author"]'
|
220 |
+
]
|
221 |
+
|
222 |
+
for selector in author_selectors:
|
223 |
+
element = soup.select_one(selector)
|
224 |
+
if element:
|
225 |
+
if element.name == 'meta':
|
226 |
+
return element.get('content', '').strip()
|
227 |
+
else:
|
228 |
+
return element.get_text().strip()
|
229 |
+
|
230 |
+
return None
|
231 |
+
|
232 |
+
def _extract_publish_date(self, soup: BeautifulSoup) -> Optional[str]:
|
233 |
+
"""Extract publication date"""
|
234 |
+
date_selectors = [
|
235 |
+
'meta[property="article:published_time"]',
|
236 |
+
'meta[name="publishdate"]',
|
237 |
+
'time[datetime]',
|
238 |
+
'.publish-date',
|
239 |
+
'.date'
|
240 |
+
]
|
241 |
+
|
242 |
+
for selector in date_selectors:
|
243 |
+
element = soup.select_one(selector)
|
244 |
+
if element:
|
245 |
+
if element.name == 'meta':
|
246 |
+
return element.get('content', '').strip()
|
247 |
+
elif element.name == 'time':
|
248 |
+
return element.get('datetime', '').strip()
|
249 |
+
else:
|
250 |
+
return element.get_text().strip()
|
251 |
+
|
252 |
+
return None
|
253 |
+
|
254 |
+
def _extract_meta_description(self, soup: BeautifulSoup) -> Optional[str]:
|
255 |
+
"""Extract meta description"""
|
256 |
+
meta_desc = soup.find('meta', attrs={'name': 'description'})
|
257 |
+
if meta_desc:
|
258 |
+
return meta_desc.get('content', '').strip()
|
259 |
+
|
260 |
+
og_desc = soup.find('meta', property='og:description')
|
261 |
+
if og_desc:
|
262 |
+
return og_desc.get('content', '').strip()
|
263 |
+
|
264 |
+
return None
|
265 |
+
|
266 |
+
def _extract_main_content(self, soup: BeautifulSoup) -> str:
|
267 |
+
"""Extract main content with multiple strategies"""
|
268 |
+
# Remove unwanted elements
|
269 |
+
for element in soup(['script', 'style', 'nav', 'header', 'footer',
|
270 |
+
'aside', 'advertisement', '.ads', '.sidebar']):
|
271 |
+
element.decompose()
|
272 |
+
|
273 |
+
# Try content-specific selectors first
|
274 |
+
content_selectors = [
|
275 |
+
'article',
|
276 |
+
'main',
|
277 |
+
'.content',
|
278 |
+
'.post-content',
|
279 |
+
'.entry-content',
|
280 |
+
'.article-body',
|
281 |
+
'#content',
|
282 |
+
'.story-body'
|
283 |
+
]
|
284 |
+
|
285 |
+
for selector in content_selectors:
|
286 |
+
element = soup.select_one(selector)
|
287 |
+
if element:
|
288 |
+
text = element.get_text(separator=' ', strip=True)
|
289 |
+
if len(text) > 200: # Minimum content threshold
|
290 |
+
return self._clean_text(text)
|
291 |
+
|
292 |
+
# Fallback: extract from body
|
293 |
+
body = soup.find('body')
|
294 |
+
if body:
|
295 |
+
text = body.get_text(separator=' ', strip=True)
|
296 |
+
return self._clean_text(text)
|
297 |
+
|
298 |
+
# Last resort: all text
|
299 |
+
return self._clean_text(soup.get_text(separator=' ', strip=True))
|
300 |
+
|
301 |
+
def _clean_text(self, text: str) -> str:
|
302 |
+
"""Clean extracted text"""
|
303 |
+
# Remove extra whitespace
|
304 |
+
text = re.sub(r'\s+', ' ', text)
|
305 |
+
|
306 |
+
# Remove common unwanted patterns
|
307 |
+
text = re.sub(r'Subscribe.*?newsletter', '', text, flags=re.IGNORECASE)
|
308 |
+
text = re.sub(r'Click here.*?more', '', text, flags=re.IGNORECASE)
|
309 |
+
text = re.sub(r'Advertisement', '', text, flags=re.IGNORECASE)
|
310 |
+
|
311 |
+
return text.strip()
|
312 |
+
|
313 |
+
def _extract_keywords(self, content: str) -> List[str]:
|
314 |
+
"""Extract basic keywords from content"""
|
315 |
+
# Simple keyword extraction (can be enhanced with NLP)
|
316 |
+
words = re.findall(r'\b[A-Za-z]{4,}\b', content.lower())
|
317 |
+
word_freq = {}
|
318 |
+
|
319 |
+
for word in words:
|
320 |
+
if word not in ['that', 'this', 'with', 'from', 'they', 'have', 'been', 'were', 'said']:
|
321 |
+
word_freq[word] = word_freq.get(word, 0) + 1
|
322 |
+
|
323 |
+
# Return top 10 keywords
|
324 |
+
sorted_words = sorted(word_freq.items(), key=lambda x: x[1], reverse=True)
|
325 |
+
return [word for word, freq in sorted_words[:10]]
|
326 |
+
|
327 |
+
class AISummarizer:
|
328 |
+
"""AI-powered content summarization"""
|
329 |
+
|
330 |
+
def __init__(self):
|
331 |
+
self.summarizer = None
|
332 |
+
self._load_model()
|
333 |
+
|
334 |
+
def _load_model(self):
|
335 |
+
"""Load summarization model with error handling"""
|
336 |
+
try:
|
337 |
+
self.summarizer = pipeline(
|
338 |
+
"summarization",
|
339 |
+
model="facebook/bart-large-cnn",
|
340 |
+
tokenizer="facebook/bart-large-cnn"
|
341 |
+
)
|
342 |
+
logger.info("Summarization model loaded successfully")
|
343 |
+
except Exception as e:
|
344 |
+
logger.error(f"Failed to load summarization model: {e}")
|
345 |
+
# Fallback to a smaller model
|
346 |
+
try:
|
347 |
+
self.summarizer = pipeline(
|
348 |
+
"summarization",
|
349 |
+
model="sshleifer/distilbart-cnn-12-6"
|
350 |
+
)
|
351 |
+
logger.info("Fallback summarization model loaded")
|
352 |
+
except Exception as e2:
|
353 |
+
logger.error(f"Failed to load fallback model: {e2}")
|
354 |
+
self.summarizer = None
|
355 |
+
|
356 |
+
def summarize(self, content: str, max_length: int = 300) -> str:
|
357 |
+
"""Generate AI summary of content"""
|
358 |
+
if not self.summarizer:
|
359 |
+
return self._extractive_summary(content)
|
360 |
+
|
361 |
+
try:
|
362 |
+
# Split content into chunks if too long
|
363 |
+
max_input_length = 1024
|
364 |
+
chunks = self._split_content(content, max_input_length)
|
365 |
+
|
366 |
+
summaries = []
|
367 |
+
for chunk in chunks:
|
368 |
+
if len(chunk.split()) < 20: # Skip very short chunks
|
369 |
+
continue
|
370 |
+
|
371 |
+
result = self.summarizer(
|
372 |
+
chunk,
|
373 |
+
max_length=min(max_length, len(chunk.split()) // 2),
|
374 |
+
min_length=30,
|
375 |
+
do_sample=False
|
376 |
+
)
|
377 |
+
summaries.append(result[0]['summary_text'])
|
378 |
+
|
379 |
+
# Combine summaries
|
380 |
+
combined = ' '.join(summaries)
|
381 |
+
|
382 |
+
# If still too long, summarize again
|
383 |
+
if len(combined.split()) > max_length:
|
384 |
+
result = self.summarizer(
|
385 |
+
combined,
|
386 |
+
max_length=max_length,
|
387 |
+
min_length=50,
|
388 |
+
do_sample=False
|
389 |
+
)
|
390 |
+
return result[0]['summary_text']
|
391 |
+
|
392 |
+
return combined
|
393 |
+
|
394 |
+
except Exception as e:
|
395 |
+
logger.error(f"AI summarization failed: {e}")
|
396 |
+
return self._extractive_summary(content)
|
397 |
+
|
398 |
+
def _split_content(self, content: str, max_length: int) -> List[str]:
|
399 |
+
"""Split content into manageable chunks"""
|
400 |
+
sentences = sent_tokenize(content)
|
401 |
+
chunks = []
|
402 |
+
current_chunk = []
|
403 |
+
current_length = 0
|
404 |
+
|
405 |
+
for sentence in sentences:
|
406 |
+
sentence_length = len(sentence.split())
|
407 |
+
if current_length + sentence_length > max_length and current_chunk:
|
408 |
+
chunks.append(' '.join(current_chunk))
|
409 |
+
current_chunk = [sentence]
|
410 |
+
current_length = sentence_length
|
411 |
+
else:
|
412 |
+
current_chunk.append(sentence)
|
413 |
+
current_length += sentence_length
|
414 |
+
|
415 |
+
if current_chunk:
|
416 |
+
chunks.append(' '.join(current_chunk))
|
417 |
+
|
418 |
+
return chunks
|
419 |
+
|
420 |
+
def _extractive_summary(self, content: str) -> str:
|
421 |
+
"""Fallback extractive summarization"""
|
422 |
+
sentences = sent_tokenize(content)
|
423 |
+
if len(sentences) <= 3:
|
424 |
+
return content
|
425 |
+
|
426 |
+
# Simple extractive approach: take first, middle, and last sentences
|
427 |
+
summary_sentences = [
|
428 |
+
sentences[0],
|
429 |
+
sentences[len(sentences) // 2],
|
430 |
+
sentences[-1]
|
431 |
+
]
|
432 |
+
|
433 |
+
return ' '.join(summary_sentences)
|
434 |
+
|
435 |
+
class WebScraperApp:
|
436 |
+
"""Main application class"""
|
437 |
+
|
438 |
+
def __init__(self):
|
439 |
+
self.extractor = ContentExtractor()
|
440 |
+
self.summarizer = AISummarizer()
|
441 |
+
self.scraped_data = []
|
442 |
+
|
443 |
+
def process_url(self, url: str, summary_length: int = 300) -> Tuple[str, str, str, str]:
|
444 |
+
"""Process a single URL and return results"""
|
445 |
+
try:
|
446 |
+
if not url.strip():
|
447 |
+
return "β Error", "Please enter a valid URL", "", ""
|
448 |
+
|
449 |
+
# Add protocol if missing
|
450 |
+
if not url.startswith(('http://', 'https://')):
|
451 |
+
url = 'https://' + url
|
452 |
+
|
453 |
+
# Extract content
|
454 |
+
with gr.update(): # Show progress
|
455 |
+
scraped_content = self.extractor.extract_content(url)
|
456 |
+
|
457 |
+
# Generate summary
|
458 |
+
summary = self.summarizer.summarize(scraped_content.content, summary_length)
|
459 |
+
scraped_content.summary = summary
|
460 |
+
|
461 |
+
# Store result
|
462 |
+
self.scraped_data.append(scraped_content)
|
463 |
+
|
464 |
+
# Format results
|
465 |
+
metadata = f"""
|
466 |
+
**π Content Analysis**
|
467 |
+
- **Title:** {scraped_content.title}
|
468 |
+
- **Author:** {scraped_content.author or 'Not found'}
|
469 |
+
- **Published:** {scraped_content.publish_date or 'Not found'}
|
470 |
+
- **Word Count:** {scraped_content.word_count:,}
|
471 |
+
- **Reading Time:** {scraped_content.reading_time} minutes
|
472 |
+
- **Extracted:** {scraped_content.extracted_at}
|
473 |
+
"""
|
474 |
+
|
475 |
+
keywords_text = f"**π·οΈ Keywords:** {', '.join(scraped_content.keywords[:10])}" if scraped_content.keywords else ""
|
476 |
+
|
477 |
+
return (
|
478 |
+
"β
Success",
|
479 |
+
metadata,
|
480 |
+
f"**π AI Summary ({len(summary.split())} words):**\n\n{summary}",
|
481 |
+
keywords_text
|
482 |
+
)
|
483 |
+
|
484 |
+
except Exception as e:
|
485 |
+
error_msg = f"Failed to process URL: {str(e)}"
|
486 |
+
logger.error(error_msg)
|
487 |
+
return "β Error", error_msg, "", ""
|
488 |
+
|
489 |
+
def export_data(self, format_type: str) -> str:
|
490 |
+
"""Export scraped data to file"""
|
491 |
+
if not self.scraped_data:
|
492 |
+
return "No data to export"
|
493 |
+
|
494 |
+
try:
|
495 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
496 |
+
|
497 |
+
if format_type == "CSV":
|
498 |
+
filename = f"scraped_data_{timestamp}.csv"
|
499 |
+
df = pd.DataFrame([
|
500 |
+
{
|
501 |
+
'URL': item.url,
|
502 |
+
'Title': item.title,
|
503 |
+
'Author': item.author,
|
504 |
+
'Published': item.publish_date,
|
505 |
+
'Word Count': item.word_count,
|
506 |
+
'Reading Time': item.reading_time,
|
507 |
+
'Summary': item.summary,
|
508 |
+
'Keywords': ', '.join(item.keywords) if item.keywords else '',
|
509 |
+
'Extracted At': item.extracted_at
|
510 |
+
}
|
511 |
+
for item in self.scraped_data
|
512 |
+
])
|
513 |
+
df.to_csv(filename, index=False)
|
514 |
+
|
515 |
+
elif format_type == "JSON":
|
516 |
+
filename = f"scraped_data_{timestamp}.json"
|
517 |
+
data = [
|
518 |
+
{
|
519 |
+
'url': item.url,
|
520 |
+
'title': item.title,
|
521 |
+
'content': item.content,
|
522 |
+
'summary': item.summary,
|
523 |
+
'metadata': {
|
524 |
+
'author': item.author,
|
525 |
+
'publish_date': item.publish_date,
|
526 |
+
'word_count': item.word_count,
|
527 |
+
'reading_time': item.reading_time,
|
528 |
+
'keywords': item.keywords,
|
529 |
+
'extracted_at': item.extracted_at
|
530 |
+
}
|
531 |
+
}
|
532 |
+
for item in self.scraped_data
|
533 |
+
]
|
534 |
+
with open(filename, 'w', encoding='utf-8') as f:
|
535 |
+
json.dump(data, f, indent=2, ensure_ascii=False)
|
536 |
+
|
537 |
+
return filename
|
538 |
+
|
539 |
+
except Exception as e:
|
540 |
+
logger.error(f"Export failed: {e}")
|
541 |
+
return f"Export failed: {str(e)}"
|
542 |
+
|
543 |
+
def clear_data(self) -> str:
|
544 |
+
"""Clear all scraped data"""
|
545 |
+
self.scraped_data.clear()
|
546 |
+
return "Data cleared successfully"
|
547 |
+
|
548 |
+
def create_interface():
|
549 |
+
"""Create the Gradio interface"""
|
550 |
+
app = WebScraperApp()
|
551 |
+
|
552 |
+
# Custom CSS for professional appearance
|
553 |
+
custom_css = """
|
554 |
+
.gradio-container {
|
555 |
+
max-width: 1200px;
|
556 |
+
margin: auto;
|
557 |
+
}
|
558 |
+
.main-header {
|
559 |
+
text-align: center;
|
560 |
+
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
|
561 |
+
color: white;
|
562 |
+
padding: 2rem;
|
563 |
+
border-radius: 10px;
|
564 |
+
margin-bottom: 2rem;
|
565 |
+
}
|
566 |
+
.feature-box {
|
567 |
+
background: #f8f9fa;
|
568 |
+
border: 1px solid #e9ecef;
|
569 |
+
border-radius: 8px;
|
570 |
+
padding: 1.5rem;
|
571 |
+
margin: 1rem 0;
|
572 |
+
}
|
573 |
+
.status-success {
|
574 |
+
color: #28a745;
|
575 |
+
font-weight: bold;
|
576 |
+
}
|
577 |
+
.status-error {
|
578 |
+
color: #dc3545;
|
579 |
+
font-weight: bold;
|
580 |
+
}
|
581 |
+
"""
|
582 |
+
|
583 |
+
with gr.Blocks(css=custom_css, title="AI Web Scraper") as interface:
|
584 |
+
|
585 |
+
# Header
|
586 |
+
gr.HTML("""
|
587 |
+
<div class="main-header">
|
588 |
+
<h1>π€ AI-Powered Web Scraper</h1>
|
589 |
+
<p>Professional content extraction and summarization for journalists, analysts, and researchers</p>
|
590 |
+
</div>
|
591 |
+
""")
|
592 |
+
|
593 |
+
# Main interface
|
594 |
+
with gr.Row():
|
595 |
+
with gr.Column(scale=2):
|
596 |
+
# Input section
|
597 |
+
gr.HTML("<div class='feature-box'><h3>π‘ Content Extraction</h3></div>")
|
598 |
+
|
599 |
+
url_input = gr.Textbox(
|
600 |
+
label="Enter URL to scrape",
|
601 |
+
placeholder="https://example.com/article",
|
602 |
+
lines=1
|
603 |
+
)
|
604 |
+
|
605 |
+
with gr.Row():
|
606 |
+
summary_length = gr.Slider(
|
607 |
+
minimum=100,
|
608 |
+
maximum=500,
|
609 |
+
value=300,
|
610 |
+
step=50,
|
611 |
+
label="Summary Length (words)"
|
612 |
+
)
|
613 |
+
|
614 |
+
scrape_btn = gr.Button("π Extract & Summarize", variant="primary", size="lg")
|
615 |
+
|
616 |
+
# Results section
|
617 |
+
gr.HTML("<div class='feature-box'><h3>π Results</h3></div>")
|
618 |
+
|
619 |
+
status_output = gr.Textbox(label="Status", lines=1, interactive=False)
|
620 |
+
metadata_output = gr.Markdown(label="Metadata")
|
621 |
+
summary_output = gr.Markdown(label="AI Summary")
|
622 |
+
keywords_output = gr.Markdown(label="Keywords")
|
623 |
+
|
624 |
+
with gr.Column(scale=1):
|
625 |
+
# Export section
|
626 |
+
gr.HTML("<div class='feature-box'><h3>πΎ Export Options</h3></div>")
|
627 |
+
|
628 |
+
export_format = gr.Radio(
|
629 |
+
choices=["CSV", "JSON"],
|
630 |
+
label="Export Format",
|
631 |
+
value="CSV"
|
632 |
+
)
|
633 |
+
|
634 |
+
export_btn = gr.Button("π₯ Export Data", variant="secondary")
|
635 |
+
export_status = gr.Textbox(label="Export Status", lines=2, interactive=False)
|
636 |
+
|
637 |
+
gr.HTML("<div class='feature-box'><h3>π§Ή Data Management</h3></div>")
|
638 |
+
clear_btn = gr.Button("ποΈ Clear All Data", variant="secondary")
|
639 |
+
clear_status = gr.Textbox(label="Clear Status", lines=1, interactive=False)
|
640 |
+
|
641 |
+
# Usage instructions
|
642 |
+
with gr.Accordion("π Usage Instructions", open=False):
|
643 |
+
gr.Markdown("""
|
644 |
+
### How to Use This Tool
|
645 |
+
|
646 |
+
1. **Enter URL**: Paste the URL of the article or webpage you want to analyze
|
647 |
+
2. **Adjust Settings**: Set your preferred summary length
|
648 |
+
3. **Extract Content**: Click "Extract & Summarize" to process the content
|
649 |
+
4. **Review Results**: View the extracted metadata, AI summary, and keywords
|
650 |
+
5. **Export Data**: Save your results in CSV or JSON format
|
651 |
+
|
652 |
+
### Features
|
653 |
+
- π‘οΈ **Security**: Built-in URL validation and robots.txt compliance
|
654 |
+
- π€ **AI Summarization**: Advanced BART model for intelligent summarization
|
655 |
+
- π **Rich Metadata**: Author, publication date, reading time, and more
|
656 |
+
- π·οΈ **Keyword Extraction**: Automatic identification of key terms
|
657 |
+
- πΎ **Export Options**: CSV and JSON formats for further analysis
|
658 |
+
- π **Batch Processing**: Process multiple URLs and export all results
|
659 |
+
|
660 |
+
### Supported Content
|
661 |
+
- News articles and blog posts
|
662 |
+
- Research papers and reports
|
663 |
+
- Documentation and guides
|
664 |
+
- Most HTML-based content
|
665 |
+
|
666 |
+
### Limitations
|
667 |
+
- Respects robots.txt restrictions
|
668 |
+
- Cannot access password-protected content
|
669 |
+
- Some dynamic content may not be captured
|
670 |
+
- Processing time varies with content length
|
671 |
+
""")
|
672 |
+
|
673 |
+
# Event handlers
|
674 |
+
scrape_btn.click(
|
675 |
+
fn=app.process_url,
|
676 |
+
inputs=[url_input, summary_length],
|
677 |
+
outputs=[status_output, metadata_output, summary_output, keywords_output]
|
678 |
+
)
|
679 |
+
|
680 |
+
export_btn.click(
|
681 |
+
fn=app.export_data,
|
682 |
+
inputs=[export_format],
|
683 |
+
outputs=[export_status]
|
684 |
+
)
|
685 |
+
|
686 |
+
clear_btn.click(
|
687 |
+
fn=app.clear_data,
|
688 |
+
outputs=[clear_status]
|
689 |
+
)
|
690 |
+
|
691 |
+
return interface
|
692 |
+
|
693 |
+
# Launch the application
|
694 |
+
if __name__ == "__main__":
|
695 |
+
interface = create_interface()
|
696 |
+
interface.launch(
|
697 |
+
server_name="0.0.0.0",
|
698 |
+
server_port=7860,
|
699 |
+
share=False,
|
700 |
+
show_error=True
|
701 |
+
)
|