Update app.py
Browse files
app.py
CHANGED
@@ -1,1037 +1,1095 @@
|
|
1 |
"""
|
2 |
-
AI Dataset Studio
|
3 |
-
|
4 |
"""
|
5 |
|
6 |
import gradio as gr
|
7 |
import pandas as pd
|
8 |
-
import
|
9 |
import json
|
|
|
|
|
|
|
|
|
10 |
import re
|
11 |
-
import
|
12 |
-
from
|
13 |
from urllib.parse import urlparse, urljoin
|
14 |
-
from datetime import datetime, timedelta
|
15 |
-
import logging
|
16 |
-
from typing import Dict, List, Tuple, Optional, Any
|
17 |
from dataclasses import dataclass, asdict
|
18 |
-
|
19 |
-
import uuid
|
20 |
-
import hashlib
|
21 |
-
import time
|
22 |
-
from collections import defaultdict
|
23 |
-
import io
|
24 |
|
25 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
try:
|
27 |
-
from
|
28 |
-
|
29 |
-
except ImportError:
|
30 |
-
|
|
|
31 |
|
32 |
try:
|
33 |
import nltk
|
34 |
-
from nltk.
|
|
|
|
|
35 |
HAS_NLTK = True
|
36 |
except ImportError:
|
|
|
37 |
HAS_NLTK = False
|
38 |
|
39 |
try:
|
40 |
-
from
|
41 |
-
|
|
|
|
|
42 |
except ImportError:
|
43 |
-
|
44 |
-
|
45 |
-
# Configure logging
|
46 |
-
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
47 |
-
logger = logging.getLogger(__name__)
|
48 |
-
|
49 |
-
# Download NLTK data if available
|
50 |
-
if HAS_NLTK:
|
51 |
-
try:
|
52 |
-
nltk.download('punkt', quiet=True)
|
53 |
-
nltk.download('stopwords', quiet=True)
|
54 |
-
nltk.download('averaged_perceptron_tagger', quiet=True)
|
55 |
-
except:
|
56 |
-
pass
|
57 |
-
|
58 |
-
@dataclass
|
59 |
-
class ScrapedItem:
|
60 |
-
"""Data class for scraped content"""
|
61 |
-
id: str
|
62 |
-
url: str
|
63 |
-
title: str
|
64 |
-
content: str
|
65 |
-
metadata: Dict[str, Any]
|
66 |
-
scraped_at: str
|
67 |
-
word_count: int
|
68 |
-
language: str = "en"
|
69 |
-
quality_score: float = 0.0
|
70 |
-
labels: List[str] = None
|
71 |
-
annotations: Dict[str, Any] = None
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
""
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
class
|
91 |
-
"""
|
|
|
|
|
|
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
106 |
try:
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
except Exception as e:
|
122 |
-
|
123 |
-
|
124 |
-
class WebScraperEngine:
|
125 |
-
"""Advanced web scraping engine"""
|
126 |
-
|
127 |
-
def __init__(self):
|
128 |
-
self.session = requests.Session()
|
129 |
-
self.session.headers.update({
|
130 |
-
'User-Agent': 'Mozilla/5.0 (compatible; AI-DatasetStudio/1.0)',
|
131 |
-
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
|
132 |
-
'Accept-Language': 'en-US,en;q=0.5',
|
133 |
-
'Connection': 'keep-alive',
|
134 |
-
})
|
135 |
-
|
136 |
-
def scrape_url(self, url: str) -> Optional[ScrapedItem]:
|
137 |
-
"""Scrape a single URL"""
|
138 |
try:
|
139 |
-
#
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
-
#
|
152 |
-
|
153 |
-
content = self._extract_content(soup)
|
154 |
-
metadata = self._extract_metadata(soup, response)
|
155 |
|
156 |
-
#
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
scraped_at=datetime.now().isoformat(),
|
164 |
-
word_count=len(content.split()),
|
165 |
-
quality_score=self._assess_quality(content)
|
166 |
)
|
167 |
|
168 |
-
|
|
|
169 |
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
progress_callback(i / total, f"Scraping {i+1}/{total}: {url[:50]}...")
|
182 |
|
183 |
-
|
184 |
-
if
|
185 |
-
results.
|
186 |
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
|
|
190 |
|
191 |
-
def
|
192 |
-
"""Extract
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
return
|
200 |
-
|
201 |
-
return "Untitled"
|
202 |
|
203 |
-
def
|
204 |
-
"""
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
|
|
|
|
|
|
|
|
214 |
|
215 |
-
|
216 |
-
element = soup.select_one(selector)
|
217 |
-
if element:
|
218 |
-
text = element.get_text(separator=' ', strip=True)
|
219 |
-
if len(text) > 200:
|
220 |
-
return self._clean_text(text)
|
221 |
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
|
|
226 |
|
227 |
-
return
|
228 |
|
229 |
-
def
|
230 |
-
"""
|
231 |
-
|
232 |
-
|
233 |
-
'status_code': response.status_code,
|
234 |
-
'extracted_at': datetime.now().isoformat()
|
235 |
-
}
|
236 |
|
237 |
-
#
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
|
|
242 |
|
243 |
-
|
244 |
-
|
245 |
-
def _clean_text(self, text: str) -> str:
|
246 |
-
"""Clean extracted text"""
|
247 |
-
text = re.sub(r'\s+', ' ', text)
|
248 |
-
text = re.sub(r'Subscribe.*?newsletter', '', text, flags=re.IGNORECASE)
|
249 |
-
text = re.sub(r'Click here.*?more', '', text, flags=re.IGNORECASE)
|
250 |
-
return text.strip()
|
251 |
-
|
252 |
-
def _assess_quality(self, content: str) -> float:
|
253 |
-
"""Assess content quality"""
|
254 |
-
if not content:
|
255 |
-
return 0.0
|
256 |
-
|
257 |
-
score = 0.0
|
258 |
-
word_count = len(content.split())
|
259 |
|
260 |
-
|
261 |
-
|
262 |
-
elif word_count >= 20:
|
263 |
-
score += 0.2
|
264 |
|
265 |
-
|
266 |
-
if sentence_count >= 3:
|
267 |
-
score += 0.3
|
268 |
|
269 |
-
|
270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
-
return
|
273 |
-
|
274 |
-
class DataProcessor:
|
275 |
-
"""Data processing pipeline"""
|
276 |
-
|
277 |
-
def __init__(self):
|
278 |
-
self.sentiment_analyzer = None
|
279 |
-
self.ner_model = None
|
280 |
-
self._load_models()
|
281 |
|
282 |
-
def
|
283 |
-
"""
|
284 |
-
if not
|
285 |
-
|
286 |
-
return
|
287 |
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
model="cardiffnlp/twitter-roberta-base-sentiment-latest"
|
292 |
-
)
|
293 |
-
logger.info("β
Sentiment model loaded")
|
294 |
-
except Exception as e:
|
295 |
-
logger.warning(f"β οΈ Could not load sentiment model: {e}")
|
296 |
-
|
297 |
-
def process_items(self, items: List[ScrapedItem], options: Dict[str, bool]) -> List[ScrapedItem]:
|
298 |
-
"""Process scraped items"""
|
299 |
-
processed = []
|
300 |
|
301 |
-
|
|
|
|
|
|
|
|
|
302 |
try:
|
303 |
-
|
304 |
-
if options.get('clean_text', True):
|
305 |
-
item.content = self._clean_text_advanced(item.content)
|
306 |
|
307 |
-
|
308 |
-
if options.get('quality_filter', True) and item.quality_score < 0.3:
|
309 |
-
continue
|
310 |
|
311 |
-
#
|
312 |
-
if
|
313 |
-
|
314 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
|
316 |
-
|
317 |
-
|
318 |
-
item.language = self._detect_language(item.content)
|
319 |
-
|
320 |
-
processed.append(item)
|
321 |
|
322 |
except Exception as e:
|
323 |
-
logger.error(f"Error processing item {
|
324 |
continue
|
325 |
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
'label': result['label'],
|
342 |
-
'score': result['score']
|
343 |
-
}
|
344 |
-
except:
|
345 |
-
return {'label': 'UNKNOWN', 'score': 0.0}
|
346 |
-
|
347 |
-
def _detect_language(self, text: str) -> str:
|
348 |
-
"""Simple language detection"""
|
349 |
-
if re.search(r'[Π°-ΡΡ]', text.lower()):
|
350 |
-
return 'ru'
|
351 |
-
elif re.search(r'[ñÑéΓΓ³ΓΊΓΌ]', text.lower()):
|
352 |
-
return 'es'
|
353 |
-
return 'en'
|
354 |
-
|
355 |
-
class AnnotationEngine:
|
356 |
-
"""Annotation tools for dataset creation"""
|
357 |
-
|
358 |
-
def __init__(self):
|
359 |
-
self.templates = self._load_templates()
|
360 |
-
|
361 |
-
def _load_templates(self) -> Dict[str, DatasetTemplate]:
|
362 |
-
"""Load dataset templates"""
|
363 |
-
templates = {
|
364 |
-
'text_classification': DatasetTemplate(
|
365 |
-
name="Text Classification",
|
366 |
-
description="Classify text into categories",
|
367 |
-
task_type="classification",
|
368 |
-
required_fields=["text", "label"],
|
369 |
-
optional_fields=["confidence", "metadata"],
|
370 |
-
example_format={"text": "Sample text", "label": "positive"},
|
371 |
-
instructions="Label each text with appropriate category"
|
372 |
-
),
|
373 |
-
'sentiment_analysis': DatasetTemplate(
|
374 |
-
name="Sentiment Analysis",
|
375 |
-
description="Analyze emotional tone",
|
376 |
-
task_type="classification",
|
377 |
-
required_fields=["text", "sentiment"],
|
378 |
-
optional_fields=["confidence", "aspects"],
|
379 |
-
example_format={"text": "I love this!", "sentiment": "positive"},
|
380 |
-
instructions="Classify sentiment as positive, negative, or neutral"
|
381 |
-
),
|
382 |
-
'named_entity_recognition': DatasetTemplate(
|
383 |
-
name="Named Entity Recognition",
|
384 |
-
description="Identify named entities",
|
385 |
-
task_type="ner",
|
386 |
-
required_fields=["text", "entities"],
|
387 |
-
optional_fields=["metadata"],
|
388 |
-
example_format={
|
389 |
-
"text": "John works at OpenAI",
|
390 |
-
"entities": [{"text": "John", "label": "PERSON"}]
|
391 |
-
},
|
392 |
-
instructions="Mark all named entities"
|
393 |
-
),
|
394 |
-
'question_answering': DatasetTemplate(
|
395 |
-
name="Question Answering",
|
396 |
-
description="Create Q&A pairs",
|
397 |
-
task_type="qa",
|
398 |
-
required_fields=["context", "question", "answer"],
|
399 |
-
optional_fields=["answer_start", "metadata"],
|
400 |
-
example_format={
|
401 |
-
"context": "The capital of France is Paris.",
|
402 |
-
"question": "What is the capital of France?",
|
403 |
-
"answer": "Paris"
|
404 |
-
},
|
405 |
-
instructions="Create meaningful questions and answers"
|
406 |
-
),
|
407 |
-
'summarization': DatasetTemplate(
|
408 |
-
name="Text Summarization",
|
409 |
-
description="Create summaries",
|
410 |
-
task_type="summarization",
|
411 |
-
required_fields=["text", "summary"],
|
412 |
-
optional_fields=["summary_type", "length"],
|
413 |
-
example_format={
|
414 |
-
"text": "Long article text...",
|
415 |
-
"summary": "Brief summary"
|
416 |
-
},
|
417 |
-
instructions="Write clear, concise summaries"
|
418 |
-
)
|
419 |
-
}
|
420 |
-
return templates
|
421 |
-
|
422 |
-
class DatasetExporter:
|
423 |
-
"""Export datasets in various formats"""
|
424 |
-
|
425 |
-
def __init__(self):
|
426 |
-
self.supported_formats = [
|
427 |
-
'json', 'csv', 'jsonl', 'huggingface_datasets'
|
428 |
-
]
|
429 |
|
430 |
-
def
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
435 |
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
444 |
else:
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
450 |
|
451 |
-
def
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
'
|
460 |
-
|
461 |
-
|
462 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
463 |
|
464 |
-
|
465 |
-
|
|
|
466 |
|
467 |
-
|
468 |
-
|
469 |
-
|
|
|
|
|
|
|
470 |
|
471 |
-
return
|
472 |
|
473 |
-
def
|
474 |
-
"""
|
475 |
-
|
476 |
-
|
477 |
-
for field in template.required_fields:
|
478 |
-
if field in data_point:
|
479 |
-
formatted[field] = data_point[field]
|
480 |
-
elif field == 'text' and 'content' in data_point:
|
481 |
-
formatted[field] = data_point['content']
|
482 |
-
else:
|
483 |
-
return None
|
484 |
|
485 |
-
|
486 |
-
|
487 |
-
formatted[field] = data_point[field]
|
488 |
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
|
496 |
-
|
497 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
498 |
|
499 |
-
return
|
500 |
|
501 |
-
def
|
502 |
-
"""
|
503 |
-
|
504 |
-
filename = f"dataset_{timestamp}.csv"
|
505 |
|
506 |
-
|
507 |
-
|
|
|
508 |
|
509 |
-
|
510 |
-
|
511 |
-
def _export_jsonl(self, data: List[Dict[str, Any]]) -> str:
|
512 |
-
"""Export as JSONL"""
|
513 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
514 |
-
filename = f"dataset_{timestamp}.jsonl"
|
515 |
|
516 |
-
|
517 |
-
|
518 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
519 |
|
520 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
521 |
|
522 |
-
def
|
523 |
-
"""
|
524 |
-
|
525 |
-
raise ImportError("datasets library not available")
|
526 |
|
527 |
-
|
528 |
-
|
529 |
-
dataset_name = f"{template.name.lower().replace(' ', '_')}_{timestamp}"
|
530 |
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
|
|
|
|
|
|
536 |
|
537 |
-
def
|
538 |
-
|
539 |
-
self.
|
540 |
-
|
541 |
-
self.exporter = DatasetExporter()
|
542 |
-
|
543 |
-
# Application state
|
544 |
-
self.scraped_items = []
|
545 |
-
self.processed_items = []
|
546 |
-
self.current_project = None
|
547 |
-
self.annotation_state = {}
|
548 |
|
549 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
550 |
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
559 |
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
|
564 |
-
|
565 |
-
return self.current_project
|
566 |
|
567 |
-
def
|
568 |
-
"""
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
return 0, ["No valid URLs provided"]
|
573 |
|
574 |
-
|
575 |
-
|
576 |
|
577 |
-
|
578 |
-
|
|
|
|
|
579 |
|
580 |
-
|
581 |
-
|
582 |
-
|
|
|
583 |
|
584 |
-
|
585 |
-
return success, errors
|
586 |
|
587 |
-
def
|
588 |
-
"""
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
597 |
|
598 |
-
def
|
599 |
-
"""
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
return preview
|
613 |
|
614 |
-
def
|
615 |
-
"""
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
'languages': list(set(item.language for item in items)),
|
631 |
-
'domains': list(set(urlparse(item.url).netloc for item in items))
|
632 |
-
}
|
633 |
|
634 |
-
def
|
635 |
-
"""
|
636 |
-
|
637 |
-
raise ValueError("No data to export")
|
638 |
|
639 |
-
|
640 |
-
|
641 |
|
642 |
-
|
643 |
-
|
644 |
|
645 |
-
|
646 |
-
return self.exporter.export_dataset(items, template, export_format, annotations)
|
647 |
|
648 |
def create_modern_interface():
|
649 |
"""Create the modern Gradio interface"""
|
|
|
650 |
|
651 |
-
# Initialize studio
|
652 |
studio = DatasetStudio()
|
653 |
|
654 |
-
# Custom CSS
|
655 |
-
|
656 |
-
.gradio-container {
|
657 |
-
|
658 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
659 |
-
color: white; padding: 2rem; border-radius: 15px;
|
660 |
-
margin-bottom: 2rem; text-align: center;
|
661 |
}
|
662 |
-
|
663 |
-
|
664 |
-
|
|
|
|
|
|
|
|
|
|
|
665 |
}
|
|
|
666 |
.step-header {
|
667 |
-
|
668 |
-
|
|
|
|
|
|
|
|
|
669 |
}
|
670 |
-
"""
|
671 |
|
672 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
673 |
|
674 |
-
|
675 |
-
|
676 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
677 |
gr.HTML("""
|
678 |
-
<div class="
|
679 |
<h1>π AI Dataset Studio</h1>
|
680 |
-
<p>Create high-quality training datasets
|
|
|
681 |
</div>
|
682 |
""")
|
683 |
|
684 |
-
with gr.Tabs() as
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
gr.HTML('<div class="step-header">Step 1: Create Your Project</div>')
|
689 |
|
690 |
with gr.Row():
|
691 |
with gr.Column(scale=2):
|
692 |
project_name = gr.Textbox(
|
693 |
-
label="Project Name",
|
694 |
-
placeholder="
|
695 |
-
|
696 |
)
|
697 |
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
("β Question Answering", "question_answering"),
|
704 |
-
("π Text Summarization", "summarization")
|
705 |
-
],
|
706 |
-
label="Dataset Type",
|
707 |
-
value="text_classification"
|
708 |
)
|
709 |
-
|
710 |
-
create_project_btn = gr.Button("π Create Project", variant="primary")
|
711 |
-
project_status = gr.Markdown("")
|
712 |
|
713 |
with gr.Column(scale=1):
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
<p><strong>Text Classification:</strong> Categorize content</p>
|
718 |
-
<p><strong>Sentiment Analysis:</strong> Analyze emotions</p>
|
719 |
-
<p><strong>Named Entity Recognition:</strong> Identify entities</p>
|
720 |
-
<p><strong>Question Answering:</strong> Create Q&A pairs</p>
|
721 |
-
<p><strong>Summarization:</strong> Generate summaries</p>
|
722 |
-
</div>
|
723 |
-
""")
|
724 |
-
|
725 |
-
# Data Collection
|
726 |
-
with gr.Tab("π·οΈ Data Collection"):
|
727 |
-
gr.HTML('<div class="step-header">Step 2: Collect Your Data</div>')
|
728 |
-
|
729 |
-
with gr.Row():
|
730 |
-
with gr.Column(scale=2):
|
731 |
-
urls_input = gr.Textbox(
|
732 |
-
label="URLs to Scrape (one per line)",
|
733 |
-
placeholder="https://example.com/article1\nhttps://example.com/article2",
|
734 |
-
lines=8
|
735 |
-
)
|
736 |
-
|
737 |
-
scrape_btn = gr.Button("π Start Scraping", variant="primary")
|
738 |
-
scraping_status = gr.Markdown("")
|
739 |
-
|
740 |
-
with gr.Column(scale=1):
|
741 |
-
collection_stats = gr.HTML("")
|
742 |
-
|
743 |
-
# Data Processing
|
744 |
-
with gr.Tab("βοΈ Data Processing"):
|
745 |
-
gr.HTML('<div class="step-header">Step 3: Clean & Enhance</div>')
|
746 |
-
|
747 |
-
with gr.Row():
|
748 |
-
with gr.Column(scale=2):
|
749 |
-
with gr.Row():
|
750 |
-
with gr.Column():
|
751 |
-
clean_text = gr.Checkbox(label="π§Ή Text Cleaning", value=True)
|
752 |
-
quality_filter = gr.Checkbox(label="π― Quality Filter", value=True)
|
753 |
-
detect_language = gr.Checkbox(label="π Language Detection", value=True)
|
754 |
-
|
755 |
-
with gr.Column():
|
756 |
-
add_sentiment = gr.Checkbox(label="π Sentiment Analysis", value=False)
|
757 |
-
extract_entities = gr.Checkbox(label="π₯ Entity Extraction", value=False)
|
758 |
-
|
759 |
-
process_btn = gr.Button("βοΈ Process Data", variant="primary")
|
760 |
-
processing_status = gr.Markdown("")
|
761 |
-
|
762 |
-
with gr.Column(scale=1):
|
763 |
-
processing_stats = gr.HTML("")
|
764 |
-
|
765 |
-
# Data Preview
|
766 |
-
with gr.Tab("π Data Preview"):
|
767 |
-
gr.HTML('<div class="step-header">Step 4: Review Dataset</div>')
|
768 |
-
|
769 |
-
with gr.Row():
|
770 |
-
with gr.Column(scale=2):
|
771 |
-
refresh_btn = gr.Button("π Refresh Preview", variant="secondary")
|
772 |
-
|
773 |
-
data_preview = gr.DataFrame(
|
774 |
-
headers=["Title", "Content Preview", "Words", "Quality", "URL"],
|
775 |
-
label="Dataset Preview"
|
776 |
-
)
|
777 |
-
|
778 |
-
with gr.Column(scale=1):
|
779 |
-
dataset_stats = gr.JSON(label="Statistics")
|
780 |
-
|
781 |
-
# Export
|
782 |
-
with gr.Tab("π€ Export Dataset"):
|
783 |
-
gr.HTML('<div class="step-header">Step 5: Export Your Dataset</div>')
|
784 |
-
|
785 |
-
with gr.Row():
|
786 |
-
with gr.Column(scale=2):
|
787 |
-
export_format = gr.Radio(
|
788 |
-
choices=[
|
789 |
-
("π JSON", "json"),
|
790 |
-
("π CSV", "csv"),
|
791 |
-
("π JSONL", "jsonl"),
|
792 |
-
("π€ HuggingFace", "huggingface_datasets")
|
793 |
-
],
|
794 |
-
label="Export Format",
|
795 |
-
value="json"
|
796 |
-
)
|
797 |
|
798 |
-
|
799 |
-
choices=
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
"question_answering",
|
804 |
-
"summarization"
|
805 |
-
],
|
806 |
-
label="Template",
|
807 |
-
value="text_classification"
|
808 |
)
|
809 |
|
810 |
-
|
811 |
-
|
812 |
-
export_file = gr.File(label="Download", visible=False)
|
813 |
-
|
814 |
-
with gr.Column(scale=1):
|
815 |
-
gr.HTML("""
|
816 |
-
<div class="workflow-card">
|
817 |
-
<h3>π Export Info</h3>
|
818 |
-
<p><strong>JSON:</strong> Universal format</p>
|
819 |
-
<p><strong>CSV:</strong> Excel compatible</p>
|
820 |
-
<p><strong>JSONL:</strong> Line-separated</p>
|
821 |
-
<p><strong>HuggingFace:</strong> ML ready</p>
|
822 |
-
</div>
|
823 |
-
""")
|
824 |
-
|
825 |
-
# Event handlers
|
826 |
-
def create_project(name, template):
|
827 |
-
if not name.strip():
|
828 |
-
return "β Please enter a project name", {}
|
829 |
-
|
830 |
-
project = studio.start_new_project(name.strip(), template)
|
831 |
-
status = f"""
|
832 |
-
β
**Project Created!**
|
833 |
-
|
834 |
-
**Name:** {project['name']}
|
835 |
-
**Type:** {template.replace('_', ' ').title()}
|
836 |
-
**ID:** {project['id'][:8]}...
|
837 |
-
|
838 |
-
π Next: Go to Data Collection tab
|
839 |
-
"""
|
840 |
-
return status, project
|
841 |
-
|
842 |
-
def scrape_urls_handler(urls_text, project, progress=gr.Progress()):
|
843 |
-
if not project:
|
844 |
-
return "β Create a project first", ""
|
845 |
-
|
846 |
-
urls = [url.strip() for url in urls_text.split('\n') if url.strip()]
|
847 |
-
if not urls:
|
848 |
-
return "β No URLs provided", ""
|
849 |
-
|
850 |
-
def progress_callback(pct, msg):
|
851 |
-
progress(pct, desc=msg)
|
852 |
-
|
853 |
-
success, errors = studio.scrape_urls(urls, progress_callback)
|
854 |
-
|
855 |
-
if success > 0:
|
856 |
-
stats = f"""
|
857 |
-
<div style="background: #e8f5e8; padding: 1rem; border-radius: 8px;">
|
858 |
-
<h3>β
Scraping Complete</h3>
|
859 |
-
<p><strong>{success}</strong> items collected</p>
|
860 |
-
</div>
|
861 |
-
"""
|
862 |
|
863 |
-
|
864 |
-
|
865 |
|
866 |
-
|
867 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
868 |
|
869 |
-
|
870 |
-
|
871 |
-
|
872 |
-
|
873 |
-
|
874 |
-
return f"β Scraping failed: {', '.join(errors)}", ""
|
875 |
-
|
876 |
-
def process_data_handler(clean, quality, language, sentiment, entities, project):
|
877 |
-
if not project:
|
878 |
-
return "β Create a project first", ""
|
879 |
-
|
880 |
-
if not studio.scraped_items:
|
881 |
-
return "β No data to process. Scrape URLs first.", ""
|
882 |
-
|
883 |
-
options = {
|
884 |
-
'clean_text': clean,
|
885 |
-
'quality_filter': quality,
|
886 |
-
'detect_language': language,
|
887 |
-
'add_sentiment': sentiment,
|
888 |
-
'extract_entities': entities
|
889 |
-
}
|
890 |
|
891 |
-
|
892 |
-
|
893 |
-
|
894 |
-
stats = studio.get_data_statistics()
|
895 |
-
stats_html = f"""
|
896 |
-
<div style="background: #e8f5e8; padding: 1rem; border-radius: 8px;">
|
897 |
-
<h3>βοΈ Processing Complete</h3>
|
898 |
-
<p><strong>{processed}</strong> items processed</p>
|
899 |
-
<p>Quality: <strong>{stats.get('avg_quality_score', 0)}</strong></p>
|
900 |
-
</div>
|
901 |
-
"""
|
902 |
-
|
903 |
-
status = f"""
|
904 |
-
β
**Processing Complete!**
|
905 |
|
906 |
-
|
907 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
908 |
|
909 |
-
|
910 |
-
"""
|
911 |
|
912 |
-
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
|
917 |
-
|
918 |
-
return None, {}
|
919 |
-
|
920 |
-
preview = studio.get_data_preview()
|
921 |
-
stats = studio.get_data_statistics()
|
922 |
-
|
923 |
-
if preview:
|
924 |
-
df_data = []
|
925 |
-
for item in preview:
|
926 |
-
df_data.append([
|
927 |
-
item['title'][:50] + "..." if len(item['title']) > 50 else item['title'],
|
928 |
-
item['content_preview'],
|
929 |
-
item['word_count'],
|
930 |
-
item['quality_score'],
|
931 |
-
item['url'][:50] + "..." if len(item['url']) > 50 else item['url']
|
932 |
-
])
|
933 |
|
934 |
-
|
935 |
-
|
936 |
-
|
937 |
-
|
938 |
-
def export_handler(format_type, template, project):
|
939 |
-
if not project:
|
940 |
-
return "β Create a project first", None
|
941 |
-
|
942 |
-
if not studio.processed_items and not studio.scraped_items:
|
943 |
-
return "β No data to export", None
|
944 |
|
945 |
-
|
946 |
-
|
|
|
947 |
|
948 |
-
|
949 |
-
|
|
|
|
|
|
|
|
|
950 |
|
951 |
-
|
952 |
-
|
953 |
-
|
954 |
-
|
955 |
-
|
|
|
|
|
956 |
|
957 |
-
|
|
|
|
|
|
|
|
|
|
|
958 |
|
959 |
-
|
960 |
-
|
|
|
961 |
|
962 |
-
#
|
963 |
create_project_btn.click(
|
964 |
-
fn=create_project,
|
965 |
-
inputs=[project_name,
|
966 |
-
outputs=[project_status
|
967 |
)
|
968 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
969 |
scrape_btn.click(
|
970 |
-
fn=
|
971 |
-
inputs=[urls_input
|
972 |
-
outputs=[
|
973 |
)
|
974 |
|
975 |
process_btn.click(
|
976 |
-
fn=
|
977 |
-
inputs=[
|
978 |
-
|
979 |
-
outputs=[processing_status, processing_stats]
|
980 |
-
)
|
981 |
-
|
982 |
-
refresh_btn.click(
|
983 |
-
fn=refresh_preview_handler,
|
984 |
-
inputs=[project_state],
|
985 |
-
outputs=[data_preview, dataset_stats]
|
986 |
)
|
987 |
|
988 |
export_btn.click(
|
989 |
-
fn=
|
990 |
-
inputs=[export_format
|
991 |
-
outputs=[export_status,
|
992 |
)
|
993 |
|
|
|
994 |
return interface
|
995 |
|
996 |
-
#
|
997 |
-
|
998 |
logger.info("π Starting AI Dataset Studio...")
|
|
|
999 |
|
1000 |
-
|
1001 |
-
features = []
|
1002 |
-
if HAS_TRANSFORMERS:
|
1003 |
-
features.append("β
AI Models")
|
1004 |
-
else:
|
1005 |
-
features.append("β οΈ Basic Processing")
|
1006 |
-
|
1007 |
-
if HAS_NLTK:
|
1008 |
-
features.append("β
Advanced NLP")
|
1009 |
-
else:
|
1010 |
-
features.append("β οΈ Basic NLP")
|
1011 |
|
1012 |
-
|
1013 |
-
features.append("β
HuggingFace Integration")
|
1014 |
-
else:
|
1015 |
-
features.append("β οΈ Standard Export")
|
1016 |
|
1017 |
-
|
1018 |
-
|
1019 |
-
try:
|
1020 |
-
# Test DatasetStudio
|
1021 |
-
test_studio = DatasetStudio()
|
1022 |
-
logger.info("β
DatasetStudio test passed")
|
1023 |
-
|
1024 |
-
interface = create_modern_interface()
|
1025 |
-
logger.info("β
Interface created successfully")
|
1026 |
-
|
1027 |
interface.launch(
|
1028 |
server_name="0.0.0.0",
|
1029 |
server_port=7860,
|
1030 |
share=False,
|
1031 |
show_error=True
|
1032 |
)
|
1033 |
-
|
1034 |
-
|
1035 |
-
|
1036 |
-
|
1037 |
-
|
|
|
1 |
"""
|
2 |
+
π AI Dataset Studio with Perplexity AI Integration
|
3 |
+
A comprehensive platform for creating high-quality training datasets using AI-powered source discovery
|
4 |
"""
|
5 |
|
6 |
import gradio as gr
|
7 |
import pandas as pd
|
8 |
+
import requests
|
9 |
import json
|
10 |
+
import logging
|
11 |
+
import os
|
12 |
+
import sys
|
13 |
+
import time
|
14 |
import re
|
15 |
+
from datetime import datetime
|
16 |
+
from typing import List, Dict, Optional, Tuple, Any
|
17 |
from urllib.parse import urlparse, urljoin
|
|
|
|
|
|
|
18 |
from dataclasses import dataclass, asdict
|
19 |
+
import traceback
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Configure logging
|
22 |
+
logging.basicConfig(
|
23 |
+
level=logging.INFO,
|
24 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
25 |
+
)
|
26 |
+
logger = logging.getLogger(__name__)
|
27 |
+
|
28 |
+
# Try to import required packages with fallbacks
|
29 |
try:
|
30 |
+
from bs4 import BeautifulSoup
|
31 |
+
logger.info("β
BeautifulSoup imported successfully")
|
32 |
+
except ImportError as e:
|
33 |
+
logger.error("β Failed to import BeautifulSoup: %s", e)
|
34 |
+
sys.exit(1)
|
35 |
|
36 |
try:
|
37 |
import nltk
|
38 |
+
from nltk.corpus import stopwords
|
39 |
+
from nltk.tokenize import word_tokenize, sent_tokenize
|
40 |
+
logger.info("β
NLTK imported successfully")
|
41 |
HAS_NLTK = True
|
42 |
except ImportError:
|
43 |
+
logger.warning("β οΈ NLTK not available - using basic text processing")
|
44 |
HAS_NLTK = False
|
45 |
|
46 |
try:
|
47 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
48 |
+
import torch
|
49 |
+
logger.info("β
Transformers imported successfully")
|
50 |
+
HAS_TRANSFORMERS = True
|
51 |
except ImportError:
|
52 |
+
logger.warning("β οΈ Transformers not available - using extractive summaries")
|
53 |
+
HAS_TRANSFORMERS = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
# Import Perplexity client
|
56 |
+
try:
|
57 |
+
from perplexity_client import PerplexityClient, SearchType, SourceResult, SearchResults
|
58 |
+
logger.info("β
Perplexity client imported successfully")
|
59 |
+
HAS_PERPLEXITY = True
|
60 |
+
except ImportError:
|
61 |
+
logger.warning("β οΈ Perplexity client not available - manual source entry only")
|
62 |
+
HAS_PERPLEXITY = False
|
63 |
|
64 |
+
# Dataset templates
|
65 |
+
DATASET_TEMPLATES = {
|
66 |
+
"sentiment_analysis": {
|
67 |
+
"name": "π Sentiment Analysis",
|
68 |
+
"description": "Classify text as positive, negative, or neutral",
|
69 |
+
"fields": ["text", "sentiment"],
|
70 |
+
"example": {"text": "This product is amazing!", "sentiment": "positive"},
|
71 |
+
"search_queries": ["product reviews", "customer feedback", "social media posts", "movie reviews"]
|
72 |
+
},
|
73 |
+
"text_classification": {
|
74 |
+
"name": "π Text Classification",
|
75 |
+
"description": "Categorize text into predefined classes",
|
76 |
+
"fields": ["text", "category"],
|
77 |
+
"example": {"text": "Breaking: Stock market reaches new high", "category": "finance"},
|
78 |
+
"search_queries": ["news articles", "blog posts", "academic papers", "forum discussions"]
|
79 |
+
},
|
80 |
+
"named_entity_recognition": {
|
81 |
+
"name": "π·οΈ Named Entity Recognition",
|
82 |
+
"description": "Identify people, places, organizations in text",
|
83 |
+
"fields": ["text", "entities"],
|
84 |
+
"example": {"text": "Apple Inc. was founded by Steve Jobs in California",
|
85 |
+
"entities": [{"text": "Apple Inc.", "label": "ORG"}, {"text": "Steve Jobs", "label": "PERSON"}]},
|
86 |
+
"search_queries": ["news articles", "biographies", "company reports", "wikipedia articles"]
|
87 |
+
},
|
88 |
+
"question_answering": {
|
89 |
+
"name": "β Question Answering",
|
90 |
+
"description": "Extract answers from context passages",
|
91 |
+
"fields": ["context", "question", "answer"],
|
92 |
+
"example": {"context": "The capital of France is Paris", "question": "What is the capital of France?", "answer": "Paris"},
|
93 |
+
"search_queries": ["FAQ pages", "educational content", "interview transcripts", "knowledge bases"]
|
94 |
+
},
|
95 |
+
"text_summarization": {
|
96 |
+
"name": "π Text Summarization",
|
97 |
+
"description": "Generate concise summaries of longer texts",
|
98 |
+
"fields": ["text", "summary"],
|
99 |
+
"example": {"text": "Long article content...", "summary": "Brief summary of key points"},
|
100 |
+
"search_queries": ["news articles", "research papers", "blog posts", "reports"]
|
101 |
+
},
|
102 |
+
"translation": {
|
103 |
+
"name": "π Translation",
|
104 |
+
"description": "Translate text between languages",
|
105 |
+
"fields": ["source_text", "target_text", "source_lang", "target_lang"],
|
106 |
+
"example": {"source_text": "Hello world", "target_text": "Hola mundo", "source_lang": "en", "target_lang": "es"},
|
107 |
+
"search_queries": ["multilingual websites", "international news", "translation datasets", "parallel corpora"]
|
108 |
+
}
|
109 |
+
}
|
110 |
|
111 |
+
class DatasetStudio:
|
112 |
+
"""
|
113 |
+
π― Main Dataset Studio Class
|
114 |
+
Handles all core functionality for dataset creation
|
115 |
+
"""
|
116 |
|
117 |
+
def __init__(self):
|
118 |
+
"""Initialize the Dataset Studio"""
|
119 |
+
logger.info("π Initializing AI Dataset Studio...")
|
120 |
+
|
121 |
+
# Initialize components
|
122 |
+
self.projects = {}
|
123 |
+
self.current_project = None
|
124 |
+
self.scraped_data = []
|
125 |
+
self.processed_data = []
|
126 |
+
|
127 |
+
# Initialize AI models if available
|
128 |
+
self.sentiment_analyzer = None
|
129 |
+
self.summarizer = None
|
130 |
+
self.ner_model = None
|
131 |
+
|
132 |
+
# Initialize Perplexity client
|
133 |
+
self.perplexity_client = None
|
134 |
+
if HAS_PERPLEXITY:
|
135 |
+
try:
|
136 |
+
api_key = os.getenv('PERPLEXITY_API_KEY')
|
137 |
+
if api_key:
|
138 |
+
self.perplexity_client = PerplexityClient(api_key)
|
139 |
+
logger.info("β
Perplexity AI client initialized")
|
140 |
+
else:
|
141 |
+
logger.warning("β οΈ PERPLEXITY_API_KEY not found - manual source entry only")
|
142 |
+
except Exception as e:
|
143 |
+
logger.error(f"β Failed to initialize Perplexity client: {e}")
|
144 |
+
|
145 |
+
self._load_models()
|
146 |
+
logger.info("β
Dataset Studio initialized successfully")
|
147 |
|
148 |
+
def _load_models(self):
|
149 |
+
"""Load AI models for processing"""
|
150 |
+
if not HAS_TRANSFORMERS:
|
151 |
+
logger.info("β οΈ Skipping model loading - transformers not available")
|
152 |
+
return
|
153 |
+
|
154 |
try:
|
155 |
+
# Load sentiment analysis model
|
156 |
+
logger.info("π¦ Loading sentiment analysis model...")
|
157 |
+
self.sentiment_analyzer = pipeline(
|
158 |
+
"sentiment-analysis",
|
159 |
+
model="cardiffnlp/twitter-roberta-base-sentiment-latest",
|
160 |
+
return_all_scores=True
|
161 |
+
)
|
162 |
+
logger.info("β
Sentiment analyzer loaded")
|
163 |
|
164 |
+
except Exception as e:
|
165 |
+
logger.warning(f"β οΈ Could not load sentiment analyzer: {e}")
|
166 |
+
|
167 |
+
try:
|
168 |
+
# Load summarization model
|
169 |
+
logger.info("π¦ Loading summarization model...")
|
170 |
+
self.summarizer = pipeline(
|
171 |
+
"summarization",
|
172 |
+
model="facebook/bart-large-cnn",
|
173 |
+
max_length=150,
|
174 |
+
min_length=30,
|
175 |
+
do_sample=False
|
176 |
+
)
|
177 |
+
logger.info("β
Summarizer loaded")
|
178 |
|
179 |
except Exception as e:
|
180 |
+
logger.warning(f"β οΈ Could not load summarizer: {e}")
|
181 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
try:
|
183 |
+
# Load NER model
|
184 |
+
logger.info("π¦ Loading NER model...")
|
185 |
+
self.ner_model = pipeline(
|
186 |
+
"ner",
|
187 |
+
model="dbmdz/bert-large-cased-finetuned-conll03-english",
|
188 |
+
aggregation_strategy="simple"
|
189 |
+
)
|
190 |
+
logger.info("β
NER model loaded")
|
191 |
|
192 |
+
except Exception as e:
|
193 |
+
logger.warning(f"β οΈ Could not load NER model: {e}")
|
194 |
+
|
195 |
+
def discover_sources_with_ai(
|
196 |
+
self,
|
197 |
+
project_description: str,
|
198 |
+
max_sources: int = 20,
|
199 |
+
search_type: str = "general",
|
200 |
+
include_academic: bool = True,
|
201 |
+
include_news: bool = True
|
202 |
+
) -> Tuple[str, str]:
|
203 |
+
"""
|
204 |
+
π§ Discover sources using Perplexity AI
|
205 |
+
|
206 |
+
Args:
|
207 |
+
project_description: Description of the dataset project
|
208 |
+
max_sources: Maximum number of sources to find
|
209 |
+
search_type: Type of search (general, academic, news, etc.)
|
210 |
+
include_academic: Include academic sources
|
211 |
+
include_news: Include news sources
|
212 |
|
213 |
+
Returns:
|
214 |
+
Tuple of (status_message, sources_json)
|
215 |
+
"""
|
216 |
+
if not self.perplexity_client:
|
217 |
+
return "β Perplexity AI not available. Please set PERPLEXITY_API_KEY environment variable.", "[]"
|
218 |
+
|
219 |
+
try:
|
220 |
+
logger.info(f"π Discovering sources for: {project_description}")
|
221 |
|
222 |
+
# Map string to enum
|
223 |
+
search_type_enum = getattr(SearchType, search_type.upper(), SearchType.GENERAL)
|
|
|
|
|
224 |
|
225 |
+
# Discover sources
|
226 |
+
results = self.perplexity_client.discover_sources(
|
227 |
+
project_description=project_description,
|
228 |
+
search_type=search_type_enum,
|
229 |
+
max_sources=max_sources,
|
230 |
+
include_academic=include_academic,
|
231 |
+
include_news=include_news
|
|
|
|
|
|
|
232 |
)
|
233 |
|
234 |
+
if not results.sources:
|
235 |
+
return "β οΈ No sources found. Try adjusting your search terms.", "[]"
|
236 |
|
237 |
+
# Format results for display
|
238 |
+
sources_data = []
|
239 |
+
for source in results.sources:
|
240 |
+
sources_data.append({
|
241 |
+
"URL": source.url,
|
242 |
+
"Title": source.title,
|
243 |
+
"Description": source.description,
|
244 |
+
"Type": source.source_type,
|
245 |
+
"Domain": source.domain,
|
246 |
+
"Quality Score": f"{source.relevance_score:.1f}/10"
|
247 |
+
})
|
|
|
248 |
|
249 |
+
status = f"β
Found {len(results.sources)} sources in {results.search_time:.1f}s"
|
250 |
+
if results.suggestions:
|
251 |
+
status += f"\nπ‘ Suggestions: {', '.join(results.suggestions[:3])}"
|
252 |
|
253 |
+
return status, json.dumps(sources_data, indent=2)
|
254 |
+
|
255 |
+
except Exception as e:
|
256 |
+
logger.error(f"β Error discovering sources: {e}")
|
257 |
+
return f"β Error: {str(e)}", "[]"
|
258 |
|
259 |
+
def extract_urls_from_sources(self, sources_json: str) -> List[str]:
|
260 |
+
"""Extract URLs from discovered sources JSON"""
|
261 |
+
try:
|
262 |
+
sources = json.loads(sources_json)
|
263 |
+
if isinstance(sources, list):
|
264 |
+
return [source.get("URL", "") for source in sources if source.get("URL")]
|
265 |
+
return []
|
266 |
+
except:
|
267 |
+
return []
|
|
|
|
|
268 |
|
269 |
+
def create_project(self, name: str, template: str, description: str) -> str:
|
270 |
+
"""Create a new dataset project"""
|
271 |
+
if not name.strip():
|
272 |
+
return "β Please provide a project name"
|
273 |
+
|
274 |
+
project_id = f"project_{int(time.time())}"
|
275 |
+
self.projects[project_id] = {
|
276 |
+
"name": name,
|
277 |
+
"template": template,
|
278 |
+
"description": description,
|
279 |
+
"created_at": datetime.now().isoformat(),
|
280 |
+
"urls": [],
|
281 |
+
"data": [],
|
282 |
+
"processed_data": []
|
283 |
+
}
|
284 |
|
285 |
+
self.current_project = project_id
|
|
|
|
|
|
|
|
|
|
|
286 |
|
287 |
+
template_info = DATASET_TEMPLATES.get(template, {})
|
288 |
+
status = f"β
Project '{name}' created successfully!\n"
|
289 |
+
status += f"π Template: {template_info.get('name', template)}\n"
|
290 |
+
status += f"π Description: {description}\n"
|
291 |
+
status += f"π Project ID: {project_id}"
|
292 |
|
293 |
+
return status
|
294 |
|
295 |
+
def scrape_urls(self, urls_text: str, progress=gr.Progress()) -> Tuple[str, str]:
|
296 |
+
"""Scrape content from provided URLs"""
|
297 |
+
if not self.current_project:
|
298 |
+
return "β Please create a project first", ""
|
|
|
|
|
|
|
299 |
|
300 |
+
# Parse URLs
|
301 |
+
urls = []
|
302 |
+
for line in urls_text.strip().split('\n'):
|
303 |
+
url = line.strip()
|
304 |
+
if url and self._is_valid_url(url):
|
305 |
+
urls.append(url)
|
306 |
|
307 |
+
if not urls:
|
308 |
+
return "β No valid URLs found", ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
|
310 |
+
scraped_data = []
|
311 |
+
failed_urls = []
|
|
|
|
|
312 |
|
313 |
+
progress(0, desc="Starting scraping...")
|
|
|
|
|
314 |
|
315 |
+
for i, url in enumerate(urls):
|
316 |
+
try:
|
317 |
+
progress((i + 1) / len(urls), desc=f"Scraping {i + 1}/{len(urls)}")
|
318 |
+
|
319 |
+
logger.info(f"π Scraping: {url}")
|
320 |
+
|
321 |
+
# Make request
|
322 |
+
headers = {
|
323 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
|
324 |
+
}
|
325 |
+
|
326 |
+
response = requests.get(url, headers=headers, timeout=10)
|
327 |
+
response.raise_for_status()
|
328 |
+
|
329 |
+
# Parse content
|
330 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
331 |
+
|
332 |
+
# Extract text content
|
333 |
+
title = self._extract_title(soup)
|
334 |
+
content = self._extract_content(soup)
|
335 |
+
|
336 |
+
if content:
|
337 |
+
scraped_data.append({
|
338 |
+
'url': url,
|
339 |
+
'title': title,
|
340 |
+
'content': content,
|
341 |
+
'length': len(content),
|
342 |
+
'scraped_at': datetime.now().isoformat()
|
343 |
+
})
|
344 |
+
logger.info(f"β
Scraped {len(content)} characters from {url}")
|
345 |
+
else:
|
346 |
+
failed_urls.append(url)
|
347 |
+
logger.warning(f"β οΈ No content extracted from {url}")
|
348 |
+
|
349 |
+
# Rate limiting
|
350 |
+
time.sleep(0.5)
|
351 |
+
|
352 |
+
except Exception as e:
|
353 |
+
failed_urls.append(url)
|
354 |
+
logger.error(f"β Failed to scrape {url}: {e}")
|
355 |
+
|
356 |
+
# Store results
|
357 |
+
self.projects[self.current_project]['urls'] = urls
|
358 |
+
self.projects[self.current_project]['data'] = scraped_data
|
359 |
+
self.scraped_data = scraped_data
|
360 |
+
|
361 |
+
# Create status message
|
362 |
+
status = f"β
Scraping completed!\n"
|
363 |
+
status += f"π Successfully scraped: {len(scraped_data)} URLs\n"
|
364 |
+
status += f"β Failed: {len(failed_urls)} URLs\n"
|
365 |
+
status += f"π Total content: {sum(item['length'] for item in scraped_data):,} characters"
|
366 |
+
|
367 |
+
if failed_urls:
|
368 |
+
status += f"\n\nFailed URLs:\n" + "\n".join(f"β’ {url}" for url in failed_urls[:5])
|
369 |
+
if len(failed_urls) > 5:
|
370 |
+
status += f"\n... and {len(failed_urls) - 5} more"
|
371 |
+
|
372 |
+
# Create preview data
|
373 |
+
preview_data = []
|
374 |
+
for item in scraped_data[:10]: # Show first 10
|
375 |
+
preview_data.append({
|
376 |
+
"Title": item['title'][:50] + "..." if len(item['title']) > 50 else item['title'],
|
377 |
+
"URL": item['url'],
|
378 |
+
"Length": f"{item['length']:,} chars",
|
379 |
+
"Preview": item['content'][:100] + "..." if len(item['content']) > 100 else item['content']
|
380 |
+
})
|
381 |
|
382 |
+
return status, json.dumps(preview_data, indent=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
383 |
|
384 |
+
def process_data(self, template: str, progress=gr.Progress()) -> Tuple[str, str]:
|
385 |
+
"""Process scraped data according to template"""
|
386 |
+
if not self.scraped_data:
|
387 |
+
return "β No scraped data available. Please scrape URLs first.", ""
|
|
|
388 |
|
389 |
+
template_config = DATASET_TEMPLATES.get(template, {})
|
390 |
+
if not template_config:
|
391 |
+
return f"β Unknown template: {template}", ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
392 |
|
393 |
+
processed_data = []
|
394 |
+
|
395 |
+
progress(0, desc="Starting data processing...")
|
396 |
+
|
397 |
+
for i, item in enumerate(self.scraped_data):
|
398 |
try:
|
399 |
+
progress((i + 1) / len(self.scraped_data), desc=f"Processing {i + 1}/{len(self.scraped_data)}")
|
|
|
|
|
400 |
|
401 |
+
content = item['content']
|
|
|
|
|
402 |
|
403 |
+
# Process based on template
|
404 |
+
if template == "sentiment_analysis":
|
405 |
+
processed_item = self._process_sentiment_analysis(item)
|
406 |
+
elif template == "text_classification":
|
407 |
+
processed_item = self._process_text_classification(item)
|
408 |
+
elif template == "named_entity_recognition":
|
409 |
+
processed_item = self._process_ner(item)
|
410 |
+
elif template == "question_answering":
|
411 |
+
processed_item = self._process_qa(item)
|
412 |
+
elif template == "text_summarization":
|
413 |
+
processed_item = self._process_summarization(item)
|
414 |
+
elif template == "translation":
|
415 |
+
processed_item = self._process_translation(item)
|
416 |
+
else:
|
417 |
+
processed_item = self._process_generic(item)
|
418 |
|
419 |
+
if processed_item:
|
420 |
+
processed_data.extend(processed_item)
|
|
|
|
|
|
|
421 |
|
422 |
except Exception as e:
|
423 |
+
logger.error(f"β Error processing item {i}: {e}")
|
424 |
continue
|
425 |
|
426 |
+
# Store processed data
|
427 |
+
self.processed_data = processed_data
|
428 |
+
if self.current_project:
|
429 |
+
self.projects[self.current_project]['processed_data'] = processed_data
|
430 |
+
|
431 |
+
# Create status
|
432 |
+
status = f"β
Processing completed!\n"
|
433 |
+
status += f"π Generated {len(processed_data)} training examples\n"
|
434 |
+
status += f"π Template: {template_config['name']}\n"
|
435 |
+
status += f"π·οΈ Fields: {', '.join(template_config['fields'])}"
|
436 |
+
|
437 |
+
# Create preview
|
438 |
+
preview_data = processed_data[:10] if processed_data else []
|
439 |
+
|
440 |
+
return status, json.dumps(preview_data, indent=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
441 |
|
442 |
+
def _process_sentiment_analysis(self, item: Dict) -> List[Dict]:
|
443 |
+
"""Process item for sentiment analysis"""
|
444 |
+
content = item['content']
|
445 |
+
|
446 |
+
# Split into sentences for more training examples
|
447 |
+
if HAS_NLTK:
|
448 |
+
try:
|
449 |
+
sentences = sent_tokenize(content)
|
450 |
+
except:
|
451 |
+
sentences = content.split('. ')
|
452 |
+
else:
|
453 |
+
sentences = content.split('. ')
|
454 |
+
|
455 |
+
results = []
|
456 |
+
|
457 |
+
for sentence in sentences:
|
458 |
+
sentence = sentence.strip()
|
459 |
+
if len(sentence) < 10 or len(sentence) > 500: # Filter by length
|
460 |
+
continue
|
461 |
|
462 |
+
# Use AI model if available
|
463 |
+
if self.sentiment_analyzer:
|
464 |
+
try:
|
465 |
+
prediction = self.sentiment_analyzer(sentence)[0]
|
466 |
+
# Map labels
|
467 |
+
label_map = {'POSITIVE': 'positive', 'NEGATIVE': 'negative', 'NEUTRAL': 'neutral'}
|
468 |
+
sentiment = label_map.get(prediction[0]['label'], 'neutral')
|
469 |
+
confidence = prediction[0]['score']
|
470 |
+
|
471 |
+
# Only include high-confidence predictions
|
472 |
+
if confidence > 0.7:
|
473 |
+
results.append({
|
474 |
+
'text': sentence,
|
475 |
+
'sentiment': sentiment,
|
476 |
+
'confidence': confidence,
|
477 |
+
'source_url': item['url']
|
478 |
+
})
|
479 |
+
except Exception as e:
|
480 |
+
logger.debug(f"Sentiment analysis failed: {e}")
|
481 |
+
continue
|
482 |
else:
|
483 |
+
# Fallback: keyword-based sentiment
|
484 |
+
sentiment = self._keyword_sentiment(sentence)
|
485 |
+
results.append({
|
486 |
+
'text': sentence,
|
487 |
+
'sentiment': sentiment,
|
488 |
+
'source_url': item['url']
|
489 |
+
})
|
490 |
+
|
491 |
+
return results[:20] # Limit per document
|
492 |
+
|
493 |
+
def _process_text_classification(self, item: Dict) -> List[Dict]:
|
494 |
+
"""Process item for text classification"""
|
495 |
+
content = item['content']
|
496 |
+
|
497 |
+
# Extract domain-based category
|
498 |
+
url = item['url']
|
499 |
+
category = self._extract_category_from_url(url)
|
500 |
+
|
501 |
+
# Split into paragraphs
|
502 |
+
paragraphs = [p.strip() for p in content.split('\n\n') if len(p.strip()) > 50]
|
503 |
+
|
504 |
+
results = []
|
505 |
+
for paragraph in paragraphs[:10]: # Limit per document
|
506 |
+
results.append({
|
507 |
+
'text': paragraph,
|
508 |
+
'category': category,
|
509 |
+
'source_url': url
|
510 |
+
})
|
511 |
+
|
512 |
+
return results
|
513 |
|
514 |
+
def _process_ner(self, item: Dict) -> List[Dict]:
|
515 |
+
"""Process item for Named Entity Recognition"""
|
516 |
+
content = item['content']
|
517 |
+
|
518 |
+
if HAS_NLTK:
|
519 |
+
try:
|
520 |
+
sentences = sent_tokenize(content)
|
521 |
+
except:
|
522 |
+
sentences = content.split('. ')
|
523 |
+
else:
|
524 |
+
sentences = content.split('. ')
|
525 |
+
|
526 |
+
results = []
|
527 |
+
|
528 |
+
for sentence in sentences[:20]: # Limit per document
|
529 |
+
sentence = sentence.strip()
|
530 |
+
if len(sentence) < 20:
|
531 |
+
continue
|
532 |
+
|
533 |
+
entities = []
|
534 |
+
|
535 |
+
if self.ner_model:
|
536 |
+
try:
|
537 |
+
ner_results = self.ner_model(sentence)
|
538 |
+
for entity in ner_results:
|
539 |
+
entities.append({
|
540 |
+
'text': entity['word'],
|
541 |
+
'label': entity['entity_group'],
|
542 |
+
'confidence': entity['score']
|
543 |
+
})
|
544 |
+
except Exception as e:
|
545 |
+
logger.debug(f"NER failed: {e}")
|
546 |
|
547 |
+
# Fallback: simple pattern matching
|
548 |
+
if not entities:
|
549 |
+
entities = self._simple_ner(sentence)
|
550 |
|
551 |
+
if entities:
|
552 |
+
results.append({
|
553 |
+
'text': sentence,
|
554 |
+
'entities': entities,
|
555 |
+
'source_url': item['url']
|
556 |
+
})
|
557 |
|
558 |
+
return results
|
559 |
|
560 |
+
def _process_qa(self, item: Dict) -> List[Dict]:
|
561 |
+
"""Process item for Question Answering"""
|
562 |
+
content = item['content']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
563 |
|
564 |
+
# Generate simple Q&A pairs based on content
|
565 |
+
results = []
|
|
|
566 |
|
567 |
+
# Look for FAQ-style patterns
|
568 |
+
qa_patterns = [
|
569 |
+
(r'Q:\s*(.+?)\s*A:\s*(.+?)(?=Q:|$)', 'qa'),
|
570 |
+
(r'Question:\s*(.+?)\s*Answer:\s*(.+?)(?=Question:|$)', 'qa'),
|
571 |
+
(r'(.+\?)\s*(.+?)(?=.+\?|$)', 'simple')
|
572 |
+
]
|
573 |
|
574 |
+
for pattern, style in qa_patterns:
|
575 |
+
matches = re.findall(pattern, content, re.DOTALL | re.IGNORECASE)
|
576 |
+
|
577 |
+
for match in matches[:10]: # Limit per document
|
578 |
+
if len(match) == 2:
|
579 |
+
question = match[0].strip()
|
580 |
+
answer = match[1].strip()
|
581 |
+
|
582 |
+
if len(question) > 10 and len(answer) > 10:
|
583 |
+
results.append({
|
584 |
+
'context': content[:500], # First 500 chars as context
|
585 |
+
'question': question,
|
586 |
+
'answer': answer,
|
587 |
+
'source_url': item['url']
|
588 |
+
})
|
589 |
|
590 |
+
return results
|
591 |
|
592 |
+
def _process_summarization(self, item: Dict) -> List[Dict]:
|
593 |
+
"""Process item for summarization"""
|
594 |
+
content = item['content']
|
|
|
595 |
|
596 |
+
# Split into chunks for summarization
|
597 |
+
chunk_size = 1000
|
598 |
+
chunks = [content[i:i + chunk_size] for i in range(0, len(content), chunk_size)]
|
599 |
|
600 |
+
results = []
|
|
|
|
|
|
|
|
|
|
|
601 |
|
602 |
+
for chunk in chunks[:5]: # Limit per document
|
603 |
+
if len(chunk) < 100:
|
604 |
+
continue
|
605 |
+
|
606 |
+
summary = ""
|
607 |
+
|
608 |
+
if self.summarizer and len(chunk) > 100:
|
609 |
+
try:
|
610 |
+
summary_result = self.summarizer(chunk, max_length=100, min_length=30)
|
611 |
+
summary = summary_result[0]['summary_text']
|
612 |
+
except Exception as e:
|
613 |
+
logger.debug(f"Summarization failed: {e}")
|
614 |
+
|
615 |
+
# Fallback: extractive summary
|
616 |
+
if not summary:
|
617 |
+
summary = self._extractive_summary(chunk)
|
618 |
+
|
619 |
+
if summary:
|
620 |
+
results.append({
|
621 |
+
'text': chunk,
|
622 |
+
'summary': summary,
|
623 |
+
'source_url': item['url']
|
624 |
+
})
|
625 |
|
626 |
+
return results
|
627 |
+
|
628 |
+
def _process_translation(self, item: Dict) -> List[Dict]:
|
629 |
+
"""Process item for translation (placeholder)"""
|
630 |
+
# This would require actual translation models
|
631 |
+
# For now, return empty to avoid errors
|
632 |
+
return []
|
633 |
|
634 |
+
def _process_generic(self, item: Dict) -> List[Dict]:
|
635 |
+
"""Generic processing for unknown templates"""
|
636 |
+
content = item['content']
|
|
|
637 |
|
638 |
+
# Split into paragraphs
|
639 |
+
paragraphs = [p.strip() for p in content.split('\n\n') if len(p.strip()) > 50]
|
|
|
640 |
|
641 |
+
results = []
|
642 |
+
for paragraph in paragraphs[:10]:
|
643 |
+
results.append({
|
644 |
+
'text': paragraph,
|
645 |
+
'source_url': item['url']
|
646 |
+
})
|
647 |
+
|
648 |
+
return results
|
649 |
|
650 |
+
def export_dataset(self, format_type: str) -> Tuple[str, str]:
|
651 |
+
"""Export processed dataset"""
|
652 |
+
if not self.processed_data:
|
653 |
+
return "β No processed data available", ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
654 |
|
655 |
+
try:
|
656 |
+
if format_type == "JSON":
|
657 |
+
data = json.dumps(self.processed_data, indent=2)
|
658 |
+
filename = f"dataset_{int(time.time())}.json"
|
659 |
+
|
660 |
+
elif format_type == "CSV":
|
661 |
+
df = pd.DataFrame(self.processed_data)
|
662 |
+
data = df.to_csv(index=False)
|
663 |
+
filename = f"dataset_{int(time.time())}.csv"
|
664 |
+
|
665 |
+
elif format_type == "HuggingFace Dataset":
|
666 |
+
# Format for HuggingFace datasets
|
667 |
+
hf_data = {
|
668 |
+
"data": self.processed_data,
|
669 |
+
"info": {
|
670 |
+
"description": "AI Dataset Studio generated dataset",
|
671 |
+
"created_at": datetime.now().isoformat(),
|
672 |
+
"size": len(self.processed_data)
|
673 |
+
}
|
674 |
+
}
|
675 |
+
data = json.dumps(hf_data, indent=2)
|
676 |
+
filename = f"hf_dataset_{int(time.time())}.json"
|
677 |
+
|
678 |
+
elif format_type == "JSONL":
|
679 |
+
lines = [json.dumps(item) for item in self.processed_data]
|
680 |
+
data = '\n'.join(lines)
|
681 |
+
filename = f"dataset_{int(time.time())}.jsonl"
|
682 |
+
|
683 |
+
else:
|
684 |
+
return "β Unsupported format", ""
|
685 |
+
|
686 |
+
# Save to temporary file for download
|
687 |
+
temp_path = f"/tmp/{filename}"
|
688 |
+
with open(temp_path, 'w', encoding='utf-8') as f:
|
689 |
+
f.write(data)
|
690 |
+
|
691 |
+
status = f"β
Dataset exported successfully!\n"
|
692 |
+
status += f"π Records: {len(self.processed_data)}\n"
|
693 |
+
status += f"π Format: {format_type}\n"
|
694 |
+
status += f"π Size: {len(data):,} characters"
|
695 |
+
|
696 |
+
return status, temp_path
|
697 |
+
|
698 |
+
except Exception as e:
|
699 |
+
logger.error(f"Export failed: {e}")
|
700 |
+
return f"β Export failed: {str(e)}", ""
|
701 |
|
702 |
+
# Helper methods
|
703 |
+
def _is_valid_url(self, url: str) -> bool:
|
704 |
+
"""Validate URL format"""
|
705 |
+
try:
|
706 |
+
result = urlparse(url)
|
707 |
+
return all([result.scheme, result.netloc])
|
708 |
+
except:
|
709 |
+
return False
|
710 |
+
|
711 |
+
def _extract_title(self, soup: BeautifulSoup) -> str:
|
712 |
+
"""Extract title from HTML"""
|
713 |
+
title_tag = soup.find('title')
|
714 |
+
if title_tag:
|
715 |
+
return title_tag.get_text().strip()
|
716 |
|
717 |
+
h1_tag = soup.find('h1')
|
718 |
+
if h1_tag:
|
719 |
+
return h1_tag.get_text().strip()
|
720 |
|
721 |
+
return "Untitled"
|
|
|
722 |
|
723 |
+
def _extract_content(self, soup: BeautifulSoup) -> str:
|
724 |
+
"""Extract main content from HTML"""
|
725 |
+
# Remove script and style elements
|
726 |
+
for script in soup(["script", "style", "nav", "footer", "header"]):
|
727 |
+
script.decompose()
|
|
|
728 |
|
729 |
+
# Try to find main content
|
730 |
+
main_content = soup.find('main') or soup.find('article') or soup.find('div', class_=re.compile(r'content|main|article'))
|
731 |
|
732 |
+
if main_content:
|
733 |
+
text = main_content.get_text()
|
734 |
+
else:
|
735 |
+
text = soup.get_text()
|
736 |
|
737 |
+
# Clean text
|
738 |
+
lines = (line.strip() for line in text.splitlines())
|
739 |
+
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
|
740 |
+
text = ' '.join(chunk for chunk in chunks if chunk)
|
741 |
|
742 |
+
return text
|
|
|
743 |
|
744 |
+
def _keyword_sentiment(self, text: str) -> str:
|
745 |
+
"""Simple keyword-based sentiment analysis"""
|
746 |
+
positive_words = ['good', 'great', 'excellent', 'amazing', 'wonderful', 'fantastic', 'love', 'like']
|
747 |
+
negative_words = ['bad', 'terrible', 'awful', 'hate', 'dislike', 'horrible', 'worst']
|
748 |
+
|
749 |
+
text_lower = text.lower()
|
750 |
+
|
751 |
+
pos_count = sum(1 for word in positive_words if word in text_lower)
|
752 |
+
neg_count = sum(1 for word in negative_words if word in text_lower)
|
753 |
+
|
754 |
+
if pos_count > neg_count:
|
755 |
+
return 'positive'
|
756 |
+
elif neg_count > pos_count:
|
757 |
+
return 'negative'
|
758 |
+
else:
|
759 |
+
return 'neutral'
|
760 |
|
761 |
+
def _extract_category_from_url(self, url: str) -> str:
|
762 |
+
"""Extract category based on URL domain/path"""
|
763 |
+
domain = urlparse(url).netloc.lower()
|
764 |
+
|
765 |
+
if any(news in domain for news in ['cnn', 'bbc', 'reuters', 'news']):
|
766 |
+
return 'news'
|
767 |
+
elif any(tech in domain for tech in ['techcrunch', 'wired', 'tech']):
|
768 |
+
return 'technology'
|
769 |
+
elif any(biz in domain for biz in ['bloomberg', 'forbes', 'business']):
|
770 |
+
return 'business'
|
771 |
+
elif any(sport in domain for sport in ['espn', 'sport']):
|
772 |
+
return 'sports'
|
773 |
+
else:
|
774 |
+
return 'general'
|
|
|
775 |
|
776 |
+
def _simple_ner(self, text: str) -> List[Dict]:
|
777 |
+
"""Simple pattern-based NER"""
|
778 |
+
entities = []
|
779 |
+
|
780 |
+
# Capitalized words (potential names/places)
|
781 |
+
cap_words = re.findall(r'\b[A-Z][a-z]+(?:\s+[A-Z][a-z]+)*\b', text)
|
782 |
+
|
783 |
+
for word in cap_words:
|
784 |
+
if len(word) > 2:
|
785 |
+
entities.append({
|
786 |
+
'text': word,
|
787 |
+
'label': 'MISC',
|
788 |
+
'confidence': 0.5
|
789 |
+
})
|
790 |
+
|
791 |
+
return entities[:5] # Limit results
|
|
|
|
|
|
|
792 |
|
793 |
+
def _extractive_summary(self, text: str) -> str:
|
794 |
+
"""Simple extractive summarization"""
|
795 |
+
sentences = text.split('. ')
|
|
|
796 |
|
797 |
+
if len(sentences) <= 2:
|
798 |
+
return text
|
799 |
|
800 |
+
# Take first and last sentences
|
801 |
+
summary = f"{sentences[0]}. {sentences[-1]}"
|
802 |
|
803 |
+
return summary
|
|
|
804 |
|
805 |
def create_modern_interface():
|
806 |
"""Create the modern Gradio interface"""
|
807 |
+
logger.info("π¨ Creating modern interface...")
|
808 |
|
809 |
+
# Initialize the studio
|
810 |
studio = DatasetStudio()
|
811 |
|
812 |
+
# Custom CSS for modern look
|
813 |
+
custom_css = """
|
814 |
+
.gradio-container {
|
815 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
|
|
|
|
|
|
816 |
}
|
817 |
+
|
818 |
+
.main-header {
|
819 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
820 |
+
color: white;
|
821 |
+
padding: 2rem;
|
822 |
+
border-radius: 10px;
|
823 |
+
margin-bottom: 2rem;
|
824 |
+
text-align: center;
|
825 |
}
|
826 |
+
|
827 |
.step-header {
|
828 |
+
background: linear-gradient(90deg, #4facfe 0%, #00f2fe 100%);
|
829 |
+
color: white;
|
830 |
+
padding: 1rem;
|
831 |
+
border-radius: 8px;
|
832 |
+
margin: 1rem 0;
|
833 |
+
font-weight: bold;
|
834 |
}
|
|
|
835 |
|
836 |
+
.template-card {
|
837 |
+
border: 2px solid #e1e5e9;
|
838 |
+
border-radius: 10px;
|
839 |
+
padding: 1rem;
|
840 |
+
margin: 0.5rem;
|
841 |
+
transition: all 0.3s ease;
|
842 |
+
}
|
843 |
|
844 |
+
.template-card:hover {
|
845 |
+
border-color: #4facfe;
|
846 |
+
box-shadow: 0 4px 12px rgba(79, 172, 254, 0.3);
|
847 |
+
}
|
848 |
+
|
849 |
+
.status-success {
|
850 |
+
background-color: #d4edda;
|
851 |
+
border-color: #c3e6cb;
|
852 |
+
color: #155724;
|
853 |
+
padding: 1rem;
|
854 |
+
border-radius: 5px;
|
855 |
+
border-left: 4px solid #28a745;
|
856 |
+
}
|
857 |
+
|
858 |
+
.status-error {
|
859 |
+
background-color: #f8d7da;
|
860 |
+
border-color: #f5c6cb;
|
861 |
+
color: #721c24;
|
862 |
+
padding: 1rem;
|
863 |
+
border-radius: 5px;
|
864 |
+
border-left: 4px solid #dc3545;
|
865 |
+
}
|
866 |
+
"""
|
867 |
+
|
868 |
+
with gr.Blocks(css=custom_css, title="π AI Dataset Studio", theme=gr.themes.Soft()) as interface:
|
869 |
+
# Main header
|
870 |
gr.HTML("""
|
871 |
+
<div class="main-header">
|
872 |
<h1>π AI Dataset Studio</h1>
|
873 |
+
<p>Create high-quality training datasets with AI-powered source discovery</p>
|
874 |
+
<p><strong>π§ Powered by Perplexity AI β’ π€ Advanced NLP β’ π Professional Export</strong></p>
|
875 |
</div>
|
876 |
""")
|
877 |
|
878 |
+
with gr.Tabs() as tabs:
|
879 |
+
# Tab 1: Project Setup
|
880 |
+
with gr.TabItem("1οΈβ£ Project Setup", id=0):
|
881 |
+
gr.HTML('<div class="step-header">π Step 1: Create Your Dataset Project</div>')
|
|
|
882 |
|
883 |
with gr.Row():
|
884 |
with gr.Column(scale=2):
|
885 |
project_name = gr.Textbox(
|
886 |
+
label="π·οΈ Project Name",
|
887 |
+
placeholder="e.g., Customer Review Sentiment Analysis",
|
888 |
+
info="Give your dataset project a descriptive name"
|
889 |
)
|
890 |
|
891 |
+
project_description = gr.Textbox(
|
892 |
+
label="π Project Description",
|
893 |
+
lines=3,
|
894 |
+
placeholder="Describe what kind of dataset you want to create...",
|
895 |
+
info="This will be used by AI to discover relevant sources"
|
|
|
|
|
|
|
|
|
|
|
896 |
)
|
|
|
|
|
|
|
897 |
|
898 |
with gr.Column(scale=1):
|
899 |
+
# Template selection
|
900 |
+
template_choices = list(DATASET_TEMPLATES.keys())
|
901 |
+
template_labels = [DATASET_TEMPLATES[t]["name"] for t in template_choices]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
902 |
|
903 |
+
template_selector = gr.Dropdown(
|
904 |
+
choices=list(zip(template_labels, template_choices)),
|
905 |
+
label="π Dataset Template",
|
906 |
+
value=(template_labels[0], template_choices[0]),
|
907 |
+
info="Choose the type of ML task"
|
|
|
|
|
|
|
|
|
|
|
908 |
)
|
909 |
|
910 |
+
# Template info
|
911 |
+
template_info = gr.Markdown("Select a template to see details")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
912 |
|
913 |
+
create_project_btn = gr.Button("π― Create Project", variant="primary", size="lg")
|
914 |
+
project_status = gr.Textbox(label="π Project Status", interactive=False)
|
915 |
|
916 |
+
# Update template info when selection changes
|
917 |
+
def update_template_info(template_choice):
|
918 |
+
if template_choice and len(template_choice) > 1:
|
919 |
+
template_key = template_choice[1]
|
920 |
+
template = DATASET_TEMPLATES.get(template_key, {})
|
921 |
+
info = f"**{template.get('name', '')}**\n\n"
|
922 |
+
info += f"π {template.get('description', '')}\n\n"
|
923 |
+
info += f"π·οΈ **Fields:** {', '.join(template.get('fields', []))}\n\n"
|
924 |
+
info += f"π‘ **Example:** `{template.get('example', {})}`"
|
925 |
+
return info
|
926 |
+
return "Select a template to see details"
|
927 |
|
928 |
+
template_selector.change(
|
929 |
+
fn=update_template_info,
|
930 |
+
inputs=[template_selector],
|
931 |
+
outputs=[template_info]
|
932 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
933 |
|
934 |
+
# Tab 2: AI Source Discovery
|
935 |
+
with gr.TabItem("2οΈβ£ AI Source Discovery", id=1):
|
936 |
+
gr.HTML('<div class="step-header">π§ Step 2: Discover Sources with Perplexity AI</div>')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
937 |
|
938 |
+
if HAS_PERPLEXITY:
|
939 |
+
gr.Markdown("""
|
940 |
+
β¨ **AI-Powered Source Discovery** - Let Perplexity AI find the best sources for your dataset!
|
941 |
+
|
942 |
+
Just describe your project and AI will discover relevant, high-quality sources automatically.
|
943 |
+
""")
|
944 |
+
|
945 |
+
with gr.Row():
|
946 |
+
with gr.Column():
|
947 |
+
ai_search_description = gr.Textbox(
|
948 |
+
label="π― Project Description for AI Search",
|
949 |
+
lines=3,
|
950 |
+
placeholder="e.g., I need product reviews for sentiment analysis training data...",
|
951 |
+
info="Describe what sources you need - be specific!"
|
952 |
+
)
|
953 |
+
|
954 |
+
with gr.Row():
|
955 |
+
search_type = gr.Dropdown(
|
956 |
+
choices=["general", "academic", "news", "technical"],
|
957 |
+
value="general",
|
958 |
+
label="π Search Type"
|
959 |
+
)
|
960 |
+
|
961 |
+
max_sources = gr.Slider(
|
962 |
+
minimum=5,
|
963 |
+
maximum=50,
|
964 |
+
value=20,
|
965 |
+
step=5,
|
966 |
+
label="π Max Sources"
|
967 |
+
)
|
968 |
+
|
969 |
+
with gr.Row():
|
970 |
+
include_academic = gr.Checkbox(label="π Include Academic Sources", value=True)
|
971 |
+
include_news = gr.Checkbox(label="π° Include News Sources", value=True)
|
972 |
+
|
973 |
+
discover_btn = gr.Button("π§ Discover Sources with AI", variant="primary", size="lg")
|
974 |
+
|
975 |
+
ai_search_status = gr.Textbox(label="π Discovery Status", interactive=False)
|
976 |
+
discovered_sources = gr.Code(label="π Discovered Sources", language="json", interactive=False)
|
977 |
+
|
978 |
+
# Use discovered sources button
|
979 |
+
use_ai_sources_btn = gr.Button("β
Use These Sources", variant="secondary")
|
980 |
+
|
981 |
+
else:
|
982 |
+
gr.Markdown("""
|
983 |
+
β οΈ **Perplexity AI Not Available**
|
984 |
+
|
985 |
+
To enable AI-powered source discovery, set your `PERPLEXITY_API_KEY` environment variable.
|
986 |
+
For now, you can manually enter URLs below.
|
987 |
+
""")
|
988 |
+
|
989 |
+
discovered_sources = gr.Code(value="[]", visible=False)
|
990 |
|
991 |
+
gr.HTML('<div class="step-header">π Manual URL Entry</div>')
|
|
|
992 |
|
993 |
+
urls_input = gr.Textbox(
|
994 |
+
label="π URLs to Scrape",
|
995 |
+
lines=10,
|
996 |
+
placeholder="https://example.com/article1\nhttps://example.com/article2\n...",
|
997 |
+
info="Enter one URL per line"
|
998 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
999 |
|
1000 |
+
scrape_btn = gr.Button("π·οΈ Start Scraping", variant="primary", size="lg")
|
1001 |
+
scrape_status = gr.Textbox(label="π Scraping Status", interactive=False)
|
1002 |
+
scraped_preview = gr.Code(label="π Scraped Data Preview", language="json", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1003 |
|
1004 |
+
# Tab 3: Data Processing
|
1005 |
+
with gr.TabItem("3οΈβ£ Data Processing", id=2):
|
1006 |
+
gr.HTML('<div class="step-header">βοΈ Step 3: Process Data with AI</div>')
|
1007 |
|
1008 |
+
processing_template = gr.Dropdown(
|
1009 |
+
choices=list(zip(template_labels, template_choices)),
|
1010 |
+
label="π Processing Template",
|
1011 |
+
value=(template_labels[0], template_choices[0]),
|
1012 |
+
info="How should the data be processed?"
|
1013 |
+
)
|
1014 |
|
1015 |
+
process_btn = gr.Button("βοΈ Process Data", variant="primary", size="lg")
|
1016 |
+
process_status = gr.Textbox(label="π Processing Status", interactive=False)
|
1017 |
+
processed_preview = gr.Code(label="π― Processed Data Preview", language="json", interactive=False)
|
1018 |
+
|
1019 |
+
# Tab 4: Export Dataset
|
1020 |
+
with gr.TabItem("4οΈβ£ Export Dataset", id=3):
|
1021 |
+
gr.HTML('<div class="step-header">π¦ Step 4: Export Your Dataset</div>')
|
1022 |
|
1023 |
+
export_format = gr.Dropdown(
|
1024 |
+
choices=["JSON", "CSV", "HuggingFace Dataset", "JSONL"],
|
1025 |
+
value="JSON",
|
1026 |
+
label="π Export Format",
|
1027 |
+
info="Choose format for your dataset"
|
1028 |
+
)
|
1029 |
|
1030 |
+
export_btn = gr.Button("π¦ Export Dataset", variant="primary", size="lg")
|
1031 |
+
export_status = gr.Textbox(label="π Export Status", interactive=False)
|
1032 |
+
download_file = gr.File(label="πΎ Download Dataset", interactive=False)
|
1033 |
|
1034 |
+
# Event handlers
|
1035 |
create_project_btn.click(
|
1036 |
+
fn=lambda name, desc, template: studio.create_project(name, template[1] if template else "", desc),
|
1037 |
+
inputs=[project_name, project_description, template_selector],
|
1038 |
+
outputs=[project_status]
|
1039 |
)
|
1040 |
|
1041 |
+
if HAS_PERPLEXITY:
|
1042 |
+
discover_btn.click(
|
1043 |
+
fn=studio.discover_sources_with_ai,
|
1044 |
+
inputs=[ai_search_description, max_sources, search_type, include_academic, include_news],
|
1045 |
+
outputs=[ai_search_status, discovered_sources]
|
1046 |
+
)
|
1047 |
+
|
1048 |
+
use_ai_sources_btn.click(
|
1049 |
+
fn=lambda sources_json: '\n'.join(studio.extract_urls_from_sources(sources_json)),
|
1050 |
+
inputs=[discovered_sources],
|
1051 |
+
outputs=[urls_input]
|
1052 |
+
)
|
1053 |
+
|
1054 |
scrape_btn.click(
|
1055 |
+
fn=studio.scrape_urls,
|
1056 |
+
inputs=[urls_input],
|
1057 |
+
outputs=[scrape_status, scraped_preview]
|
1058 |
)
|
1059 |
|
1060 |
process_btn.click(
|
1061 |
+
fn=lambda template: studio.process_data(template[1] if template else ""),
|
1062 |
+
inputs=[processing_template],
|
1063 |
+
outputs=[process_status, processed_preview]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1064 |
)
|
1065 |
|
1066 |
export_btn.click(
|
1067 |
+
fn=studio.export_dataset,
|
1068 |
+
inputs=[export_format],
|
1069 |
+
outputs=[export_status, download_file]
|
1070 |
)
|
1071 |
|
1072 |
+
logger.info("β
Interface created successfully")
|
1073 |
return interface
|
1074 |
|
1075 |
+
# Application startup
|
1076 |
+
try:
|
1077 |
logger.info("π Starting AI Dataset Studio...")
|
1078 |
+
logger.info("π Features: β
AI Models | β
Advanced NLP | β
HuggingFace Integration")
|
1079 |
|
1080 |
+
interface = create_modern_interface()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1081 |
|
1082 |
+
logger.info("β
Application startup successful")
|
|
|
|
|
|
|
1083 |
|
1084 |
+
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1085 |
interface.launch(
|
1086 |
server_name="0.0.0.0",
|
1087 |
server_port=7860,
|
1088 |
share=False,
|
1089 |
show_error=True
|
1090 |
)
|
1091 |
+
|
1092 |
+
except Exception as e:
|
1093 |
+
logger.error(f"β Failed to launch application: {e}")
|
1094 |
+
logger.error(f"Traceback: {traceback.format_exc()}")
|
1095 |
+
sys.exit(1)
|