Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,6 @@
|
|
1 |
"""
|
2 |
-
AI Dataset Studio -
|
3 |
-
|
4 |
-
|
5 |
-
Features:
|
6 |
-
- Intelligent web scraping with content extraction
|
7 |
-
- Automated data cleaning and preprocessing
|
8 |
-
- Interactive annotation tools
|
9 |
-
- Template-based workflows for common ML tasks
|
10 |
-
- High-quality dataset generation
|
11 |
-
- Export to HuggingFace Hub and popular ML formats
|
12 |
-
- Visual data quality metrics
|
13 |
-
- No-code dataset creation workflows
|
14 |
"""
|
15 |
|
16 |
import gradio as gr
|
@@ -31,12 +21,10 @@ import hashlib
|
|
31 |
import time
|
32 |
from collections import defaultdict
|
33 |
import io
|
34 |
-
import zipfile
|
35 |
|
36 |
# Optional imports with fallbacks
|
37 |
try:
|
38 |
from transformers import pipeline, AutoTokenizer, AutoModel
|
39 |
-
from sentence_transformers import SentenceTransformer
|
40 |
HAS_TRANSFORMERS = True
|
41 |
except ImportError:
|
42 |
HAS_TRANSFORMERS = False
|
@@ -44,7 +32,6 @@ except ImportError:
|
|
44 |
try:
|
45 |
import nltk
|
46 |
from nltk.tokenize import sent_tokenize, word_tokenize
|
47 |
-
from nltk.corpus import stopwords
|
48 |
HAS_NLTK = True
|
49 |
except ImportError:
|
50 |
HAS_NLTK = False
|
@@ -94,53 +81,65 @@ class DatasetTemplate:
|
|
94 |
"""Template for dataset creation"""
|
95 |
name: str
|
96 |
description: str
|
97 |
-
task_type: str
|
98 |
required_fields: List[str]
|
99 |
optional_fields: List[str]
|
100 |
example_format: Dict[str, Any]
|
101 |
instructions: str
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
class WebScraperEngine:
|
104 |
-
"""Advanced web scraping engine
|
105 |
|
106 |
def __init__(self):
|
107 |
self.session = requests.Session()
|
108 |
self.session.headers.update({
|
109 |
-
'User-Agent': 'Mozilla/5.0 (compatible; AI-DatasetStudio/1.0
|
110 |
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
|
111 |
'Accept-Language': 'en-US,en;q=0.5',
|
112 |
-
'Accept-Encoding': 'gzip, deflate',
|
113 |
'Connection': 'keep-alive',
|
114 |
})
|
115 |
-
|
116 |
-
# Initialize AI models if available
|
117 |
-
self.content_classifier = None
|
118 |
-
self.quality_scorer = None
|
119 |
-
self._load_models()
|
120 |
-
|
121 |
-
def _load_models(self):
|
122 |
-
"""Load AI models for content analysis"""
|
123 |
-
if not HAS_TRANSFORMERS:
|
124 |
-
logger.warning("⚠️ Transformers not available, using rule-based methods")
|
125 |
-
return
|
126 |
-
|
127 |
-
try:
|
128 |
-
# Content quality assessment
|
129 |
-
self.quality_scorer = pipeline(
|
130 |
-
"text-classification",
|
131 |
-
model="martin-ha/toxic-comment-model",
|
132 |
-
return_all_scores=True
|
133 |
-
)
|
134 |
-
logger.info("✅ Quality assessment model loaded")
|
135 |
-
except Exception as e:
|
136 |
-
logger.warning(f"⚠️ Could not load quality model: {e}")
|
137 |
|
138 |
def scrape_url(self, url: str) -> Optional[ScrapedItem]:
|
139 |
-
"""Scrape a single URL
|
140 |
try:
|
141 |
# Validate URL
|
142 |
-
|
143 |
-
|
|
|
144 |
|
145 |
# Fetch content
|
146 |
response = self.session.get(url, timeout=15)
|
@@ -149,12 +148,12 @@ class WebScraperEngine:
|
|
149 |
# Parse HTML
|
150 |
soup = BeautifulSoup(response.content, 'html.parser')
|
151 |
|
152 |
-
# Extract
|
153 |
title = self._extract_title(soup)
|
154 |
content = self._extract_content(soup)
|
155 |
metadata = self._extract_metadata(soup, response)
|
156 |
|
157 |
-
# Create
|
158 |
item = ScrapedItem(
|
159 |
id=str(uuid.uuid4()),
|
160 |
url=url,
|
@@ -173,7 +172,7 @@ class WebScraperEngine:
|
|
173 |
return None
|
174 |
|
175 |
def batch_scrape(self, urls: List[str], progress_callback=None) -> List[ScrapedItem]:
|
176 |
-
"""Scrape multiple URLs
|
177 |
results = []
|
178 |
total = len(urls)
|
179 |
|
@@ -185,54 +184,32 @@ class WebScraperEngine:
|
|
185 |
if item:
|
186 |
results.append(item)
|
187 |
|
188 |
-
# Rate limiting
|
189 |
-
time.sleep(1)
|
190 |
|
191 |
return results
|
192 |
|
193 |
-
def _is_valid_url(self, url: str) -> bool:
|
194 |
-
"""Validate URL format and safety"""
|
195 |
-
try:
|
196 |
-
parsed = urlparse(url)
|
197 |
-
return parsed.scheme in ['http', 'https'] and parsed.netloc
|
198 |
-
except:
|
199 |
-
return False
|
200 |
-
|
201 |
def _extract_title(self, soup: BeautifulSoup) -> str:
|
202 |
"""Extract page title"""
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
'meta[name="twitter:title"]',
|
207 |
-
'title',
|
208 |
-
'h1'
|
209 |
-
]
|
210 |
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
if element.name == 'meta':
|
215 |
-
return element.get('content', '').strip()
|
216 |
-
else:
|
217 |
-
return element.get_text().strip()
|
218 |
|
219 |
return "Untitled"
|
220 |
|
221 |
def _extract_content(self, soup: BeautifulSoup) -> str:
|
222 |
-
"""Extract main content
|
223 |
# Remove unwanted elements
|
224 |
for element in soup(['script', 'style', 'nav', 'header', 'footer', 'aside']):
|
225 |
element.decompose()
|
226 |
|
227 |
-
# Try content
|
228 |
content_selectors = [
|
229 |
-
'article',
|
230 |
-
'
|
231 |
-
'.content',
|
232 |
-
'.post-content',
|
233 |
-
'.entry-content',
|
234 |
-
'.article-body',
|
235 |
-
'[role="main"]'
|
236 |
]
|
237 |
|
238 |
for selector in content_selectors:
|
@@ -250,18 +227,16 @@ class WebScraperEngine:
|
|
250 |
return self._clean_text(soup.get_text(separator=' ', strip=True))
|
251 |
|
252 |
def _extract_metadata(self, soup: BeautifulSoup, response) -> Dict[str, Any]:
|
253 |
-
"""Extract metadata
|
254 |
metadata = {
|
255 |
'domain': urlparse(response.url).netloc,
|
256 |
'status_code': response.status_code,
|
257 |
-
'content_type': response.headers.get('content-type', ''),
|
258 |
'extracted_at': datetime.now().isoformat()
|
259 |
}
|
260 |
|
261 |
# Extract meta tags
|
262 |
-
|
263 |
-
|
264 |
-
element = soup.find('meta', attrs={'name': tag}) or soup.find('meta', attrs={'property': f'article:{tag}'})
|
265 |
if element:
|
266 |
metadata[tag] = element.get('content', '')
|
267 |
|
@@ -269,155 +244,97 @@ class WebScraperEngine:
|
|
269 |
|
270 |
def _clean_text(self, text: str) -> str:
|
271 |
"""Clean extracted text"""
|
272 |
-
# Remove extra whitespace
|
273 |
text = re.sub(r'\s+', ' ', text)
|
274 |
-
|
275 |
-
|
276 |
-
patterns = [
|
277 |
-
r'Subscribe.*?newsletter',
|
278 |
-
r'Click here.*?more',
|
279 |
-
r'Advertisement',
|
280 |
-
r'Share this.*?social',
|
281 |
-
r'Follow us on.*?media'
|
282 |
-
]
|
283 |
-
|
284 |
-
for pattern in patterns:
|
285 |
-
text = re.sub(pattern, '', text, flags=re.IGNORECASE)
|
286 |
-
|
287 |
return text.strip()
|
288 |
|
289 |
def _assess_quality(self, content: str) -> float:
|
290 |
-
"""Assess content quality
|
291 |
if not content:
|
292 |
return 0.0
|
293 |
|
294 |
score = 0.0
|
295 |
-
|
296 |
-
# Length check
|
297 |
word_count = len(content.split())
|
|
|
298 |
if word_count >= 50:
|
299 |
-
score += 0.
|
300 |
elif word_count >= 20:
|
301 |
-
score += 0.
|
302 |
|
303 |
-
# Structure check (sentences)
|
304 |
sentence_count = len(re.split(r'[.!?]+', content))
|
305 |
if sentence_count >= 3:
|
306 |
-
score += 0.
|
307 |
-
|
308 |
-
# Language quality (basic)
|
309 |
-
if re.search(r'[A-Z][a-z]+', content): # Proper capitalization
|
310 |
-
score += 0.2
|
311 |
-
|
312 |
-
if not re.search(r'[^\w\s]', content[:100]): # No weird characters at start
|
313 |
-
score += 0.1
|
314 |
|
315 |
-
|
316 |
-
|
317 |
-
if 3 <= avg_word_length <= 8:
|
318 |
-
score += 0.2
|
319 |
|
320 |
return min(score, 1.0)
|
321 |
|
322 |
class DataProcessor:
|
323 |
-
"""
|
324 |
|
325 |
def __init__(self):
|
326 |
-
self.language_detector = None
|
327 |
self.sentiment_analyzer = None
|
328 |
self.ner_model = None
|
329 |
self._load_models()
|
330 |
|
331 |
def _load_models(self):
|
332 |
-
"""Load NLP models
|
333 |
if not HAS_TRANSFORMERS:
|
|
|
334 |
return
|
335 |
|
336 |
try:
|
337 |
-
# Sentiment analysis
|
338 |
self.sentiment_analyzer = pipeline(
|
339 |
"sentiment-analysis",
|
340 |
model="cardiffnlp/twitter-roberta-base-sentiment-latest"
|
341 |
)
|
342 |
-
|
343 |
-
# Named Entity Recognition
|
344 |
-
self.ner_model = pipeline(
|
345 |
-
"ner",
|
346 |
-
model="dbmdz/bert-large-cased-finetuned-conll03-english",
|
347 |
-
aggregation_strategy="simple"
|
348 |
-
)
|
349 |
-
|
350 |
-
logger.info("✅ NLP models loaded successfully")
|
351 |
except Exception as e:
|
352 |
-
logger.warning(f"⚠️ Could not load
|
353 |
|
354 |
-
def process_items(self, items: List[ScrapedItem],
|
355 |
-
"""Process scraped items
|
356 |
-
|
357 |
|
358 |
for item in items:
|
359 |
-
|
360 |
-
|
361 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
362 |
|
363 |
-
return
|
364 |
-
|
365 |
-
def _process_single_item(self, item: ScrapedItem, options: Dict[str, bool]) -> Optional[ScrapedItem]:
|
366 |
-
"""Process a single item"""
|
367 |
-
try:
|
368 |
-
# Clean content
|
369 |
-
if options.get('clean_text', True):
|
370 |
-
item.content = self._clean_text_advanced(item.content)
|
371 |
-
|
372 |
-
# Filter by quality
|
373 |
-
if options.get('quality_filter', True) and item.quality_score < 0.3:
|
374 |
-
return None
|
375 |
-
|
376 |
-
# Add sentiment analysis
|
377 |
-
if options.get('add_sentiment', False) and self.sentiment_analyzer:
|
378 |
-
sentiment = self._analyze_sentiment(item.content)
|
379 |
-
item.metadata['sentiment'] = sentiment
|
380 |
-
|
381 |
-
# Add named entities
|
382 |
-
if options.get('extract_entities', False) and self.ner_model:
|
383 |
-
entities = self._extract_entities(item.content)
|
384 |
-
item.metadata['entities'] = entities
|
385 |
-
|
386 |
-
# Add language detection
|
387 |
-
if options.get('detect_language', True):
|
388 |
-
item.language = self._detect_language(item.content)
|
389 |
-
|
390 |
-
return item
|
391 |
-
|
392 |
-
except Exception as e:
|
393 |
-
logger.error(f"Error processing item {item.id}: {e}")
|
394 |
-
return None
|
395 |
|
396 |
def _clean_text_advanced(self, text: str) -> str:
|
397 |
"""Advanced text cleaning"""
|
398 |
-
# Remove URLs
|
399 |
text = re.sub(r'http\S+|www\.\S+', '', text)
|
400 |
-
|
401 |
-
# Remove email addresses
|
402 |
text = re.sub(r'\S+@\S+', '', text)
|
403 |
-
|
404 |
-
# Remove excessive punctuation
|
405 |
-
text = re.sub(r'[!?]{2,}', '!', text)
|
406 |
-
text = re.sub(r'\.{3,}', '...', text)
|
407 |
-
|
408 |
-
# Normalize whitespace
|
409 |
text = re.sub(r'\s+', ' ', text)
|
410 |
-
|
411 |
-
# Remove very short paragraphs (likely navigation)
|
412 |
-
paragraphs = text.split('\n')
|
413 |
-
paragraphs = [p.strip() for p in paragraphs if len(p.strip()) > 20]
|
414 |
-
|
415 |
-
return '\n'.join(paragraphs).strip()
|
416 |
|
417 |
def _analyze_sentiment(self, text: str) -> Dict[str, Any]:
|
418 |
-
"""Analyze sentiment
|
419 |
try:
|
420 |
-
# Truncate text for model limits
|
421 |
text_sample = text[:512]
|
422 |
result = self.sentiment_analyzer(text_sample)[0]
|
423 |
return {
|
@@ -427,80 +344,56 @@ class DataProcessor:
|
|
427 |
except:
|
428 |
return {'label': 'UNKNOWN', 'score': 0.0}
|
429 |
|
430 |
-
def _extract_entities(self, text: str) -> List[Dict[str, Any]]:
|
431 |
-
"""Extract named entities"""
|
432 |
-
try:
|
433 |
-
# Truncate text for model limits
|
434 |
-
text_sample = text[:512]
|
435 |
-
entities = self.ner_model(text_sample)
|
436 |
-
return [
|
437 |
-
{
|
438 |
-
'text': ent['word'],
|
439 |
-
'label': ent['entity_group'],
|
440 |
-
'confidence': ent['score']
|
441 |
-
}
|
442 |
-
for ent in entities
|
443 |
-
]
|
444 |
-
except:
|
445 |
-
return []
|
446 |
-
|
447 |
def _detect_language(self, text: str) -> str:
|
448 |
"""Simple language detection"""
|
449 |
-
# Basic heuristic - could be enhanced with proper language detection
|
450 |
if re.search(r'[а-яё]', text.lower()):
|
451 |
return 'ru'
|
452 |
elif re.search(r'[ñáéíóúü]', text.lower()):
|
453 |
return 'es'
|
454 |
-
|
455 |
-
return 'fr'
|
456 |
-
else:
|
457 |
-
return 'en'
|
458 |
|
459 |
class AnnotationEngine:
|
460 |
-
"""
|
461 |
|
462 |
def __init__(self):
|
463 |
self.templates = self._load_templates()
|
464 |
|
465 |
def _load_templates(self) -> Dict[str, DatasetTemplate]:
|
466 |
-
"""Load
|
467 |
templates = {
|
468 |
'text_classification': DatasetTemplate(
|
469 |
name="Text Classification",
|
470 |
-
description="Classify text into
|
471 |
task_type="classification",
|
472 |
required_fields=["text", "label"],
|
473 |
optional_fields=["confidence", "metadata"],
|
474 |
example_format={"text": "Sample text", "label": "positive"},
|
475 |
-
instructions="Label each text with
|
476 |
),
|
477 |
'sentiment_analysis': DatasetTemplate(
|
478 |
name="Sentiment Analysis",
|
479 |
-
description="Analyze emotional tone
|
480 |
task_type="classification",
|
481 |
required_fields=["text", "sentiment"],
|
482 |
optional_fields=["confidence", "aspects"],
|
483 |
example_format={"text": "I love this!", "sentiment": "positive"},
|
484 |
-
instructions="Classify
|
485 |
),
|
486 |
'named_entity_recognition': DatasetTemplate(
|
487 |
name="Named Entity Recognition",
|
488 |
-
description="Identify
|
489 |
task_type="ner",
|
490 |
required_fields=["text", "entities"],
|
491 |
optional_fields=["metadata"],
|
492 |
example_format={
|
493 |
-
"text": "John works at OpenAI
|
494 |
-
"entities": [
|
495 |
-
{"text": "John", "label": "PERSON", "start": 0, "end": 4},
|
496 |
-
{"text": "OpenAI", "label": "ORG", "start": 14, "end": 20}
|
497 |
-
]
|
498 |
},
|
499 |
-
instructions="Mark all named entities
|
500 |
),
|
501 |
'question_answering': DatasetTemplate(
|
502 |
name="Question Answering",
|
503 |
-
description="Create
|
504 |
task_type="qa",
|
505 |
required_fields=["context", "question", "answer"],
|
506 |
optional_fields=["answer_start", "metadata"],
|
@@ -509,77 +402,45 @@ class AnnotationEngine:
|
|
509 |
"question": "What is the capital of France?",
|
510 |
"answer": "Paris"
|
511 |
},
|
512 |
-
instructions="Create meaningful questions and
|
513 |
),
|
514 |
'summarization': DatasetTemplate(
|
515 |
name="Text Summarization",
|
516 |
-
description="Create
|
517 |
task_type="summarization",
|
518 |
required_fields=["text", "summary"],
|
519 |
optional_fields=["summary_type", "length"],
|
520 |
example_format={
|
521 |
"text": "Long article text...",
|
522 |
-
"summary": "Brief summary
|
523 |
},
|
524 |
-
instructions="Write clear, concise summaries
|
525 |
)
|
526 |
}
|
527 |
return templates
|
528 |
-
|
529 |
-
def create_annotation_interface(self, template_name: str, items: List[ScrapedItem]) -> Dict[str, Any]:
|
530 |
-
"""Create annotation interface for specific template"""
|
531 |
-
template = self.templates.get(template_name)
|
532 |
-
if not template:
|
533 |
-
raise ValueError(f"Unknown template: {template_name}")
|
534 |
-
|
535 |
-
# Prepare data for annotation
|
536 |
-
annotation_data = []
|
537 |
-
for item in items:
|
538 |
-
annotation_data.append({
|
539 |
-
'id': item.id,
|
540 |
-
'text': item.content[:1000], # Truncate for UI
|
541 |
-
'title': item.title,
|
542 |
-
'url': item.url,
|
543 |
-
'annotations': {}
|
544 |
-
})
|
545 |
-
|
546 |
-
return {
|
547 |
-
'template': template,
|
548 |
-
'data': annotation_data,
|
549 |
-
'progress': 0,
|
550 |
-
'completed': 0
|
551 |
-
}
|
552 |
|
553 |
class DatasetExporter:
|
554 |
-
"""Export datasets in various formats
|
555 |
|
556 |
def __init__(self):
|
557 |
self.supported_formats = [
|
558 |
-
'huggingface_datasets'
|
559 |
-
'json',
|
560 |
-
'csv',
|
561 |
-
'parquet',
|
562 |
-
'jsonl',
|
563 |
-
'pytorch',
|
564 |
-
'tensorflow'
|
565 |
]
|
566 |
|
567 |
def export_dataset(self, items: List[ScrapedItem], template: DatasetTemplate,
|
568 |
export_format: str, annotations: Dict[str, Any] = None) -> str:
|
569 |
-
"""Export
|
570 |
try:
|
571 |
-
|
572 |
-
dataset_data = self._prepare_dataset_data(items, template, annotations)
|
573 |
|
574 |
-
|
575 |
-
if export_format == 'huggingface_datasets':
|
576 |
-
return self._export_huggingface(dataset_data, template)
|
577 |
-
elif export_format == 'json':
|
578 |
return self._export_json(dataset_data)
|
579 |
elif export_format == 'csv':
|
580 |
return self._export_csv(dataset_data)
|
581 |
elif export_format == 'jsonl':
|
582 |
return self._export_jsonl(dataset_data)
|
|
|
|
|
583 |
else:
|
584 |
raise ValueError(f"Unsupported format: {export_format}")
|
585 |
|
@@ -587,13 +448,12 @@ class DatasetExporter:
|
|
587 |
logger.error(f"Export failed: {e}")
|
588 |
raise
|
589 |
|
590 |
-
def
|
591 |
-
|
592 |
-
"""Prepare data according to template
|
593 |
dataset_data = []
|
594 |
|
595 |
for item in items:
|
596 |
-
# Base data from scraped item
|
597 |
data_point = {
|
598 |
'text': item.content,
|
599 |
'title': item.title,
|
@@ -601,312 +461,240 @@ class DatasetExporter:
|
|
601 |
'metadata': item.metadata
|
602 |
}
|
603 |
|
604 |
-
# Add annotations if available
|
605 |
if annotations and item.id in annotations:
|
606 |
-
|
607 |
-
data_point.update(item_annotations)
|
608 |
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
dataset_data.append(formatted_point)
|
613 |
|
614 |
return dataset_data
|
615 |
|
616 |
def _format_for_template(self, data_point: Dict[str, Any], template: DatasetTemplate) -> Dict[str, Any]:
|
617 |
-
"""Format data
|
618 |
formatted = {}
|
619 |
|
620 |
-
# Ensure required fields are present
|
621 |
for field in template.required_fields:
|
622 |
if field in data_point:
|
623 |
formatted[field] = data_point[field]
|
624 |
elif field == 'text' and 'content' in data_point:
|
625 |
formatted[field] = data_point['content']
|
626 |
else:
|
627 |
-
# Skip this data point if required field is missing
|
628 |
return None
|
629 |
|
630 |
-
# Add optional fields if present
|
631 |
for field in template.optional_fields:
|
632 |
if field in data_point:
|
633 |
formatted[field] = data_point[field]
|
634 |
|
635 |
return formatted
|
636 |
|
637 |
-
def
|
638 |
-
"""Export as
|
639 |
-
if not HAS_DATASETS:
|
640 |
-
raise ImportError("datasets library not available")
|
641 |
-
|
642 |
-
try:
|
643 |
-
# Create dataset
|
644 |
-
dataset = Dataset.from_list(dataset_data)
|
645 |
-
|
646 |
-
# Create dataset card
|
647 |
-
card_content = f"""
|
648 |
-
# {template.name} Dataset
|
649 |
-
|
650 |
-
## Description
|
651 |
-
{template.description}
|
652 |
-
|
653 |
-
## Task Type
|
654 |
-
{template.task_type}
|
655 |
-
|
656 |
-
## Format
|
657 |
-
{template.example_format}
|
658 |
-
|
659 |
-
## Instructions
|
660 |
-
{template.instructions}
|
661 |
-
|
662 |
-
## Statistics
|
663 |
-
- Total samples: {len(dataset_data)}
|
664 |
-
- Created: {datetime.now().isoformat()}
|
665 |
-
|
666 |
-
## Usage
|
667 |
-
```python
|
668 |
-
from datasets import load_dataset
|
669 |
-
dataset = load_dataset('path/to/dataset')
|
670 |
-
```
|
671 |
-
"""
|
672 |
-
|
673 |
-
# Save dataset
|
674 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
675 |
-
dataset_name = f"{template.name.lower().replace(' ', '_')}_{timestamp}"
|
676 |
-
|
677 |
-
# Save locally (would push to Hub in production)
|
678 |
-
dataset.save_to_disk(dataset_name)
|
679 |
-
|
680 |
-
# Create info file
|
681 |
-
with open(f"{dataset_name}/README.md", "w") as f:
|
682 |
-
f.write(card_content)
|
683 |
-
|
684 |
-
return dataset_name
|
685 |
-
|
686 |
-
except Exception as e:
|
687 |
-
logger.error(f"HuggingFace export failed: {e}")
|
688 |
-
raise
|
689 |
-
|
690 |
-
def _export_json(self, dataset_data: List[Dict[str, Any]]) -> str:
|
691 |
-
"""Export as JSON file"""
|
692 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
693 |
filename = f"dataset_{timestamp}.json"
|
694 |
|
695 |
with open(filename, 'w', encoding='utf-8') as f:
|
696 |
-
json.dump(
|
697 |
|
698 |
return filename
|
699 |
|
700 |
-
def _export_csv(self,
|
701 |
-
"""Export as CSV
|
702 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
703 |
filename = f"dataset_{timestamp}.csv"
|
704 |
|
705 |
-
df = pd.DataFrame(
|
706 |
df.to_csv(filename, index=False)
|
707 |
|
708 |
return filename
|
709 |
|
710 |
-
def _export_jsonl(self,
|
711 |
-
"""Export as JSONL
|
712 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
713 |
filename = f"dataset_{timestamp}.jsonl"
|
714 |
|
715 |
with open(filename, 'w', encoding='utf-8') as f:
|
716 |
-
for item in
|
717 |
f.write(json.dumps(item, ensure_ascii=False) + '\n')
|
718 |
|
719 |
return filename
|
720 |
-
|
721 |
-
def create_modern_interface():
|
722 |
-
"""Create modern, intuitive interface for AI Dataset Studio"""
|
723 |
-
|
724 |
-
# Initialize the studio
|
725 |
-
studio = DatasetStudio()
|
726 |
-
|
727 |
-
# Custom CSS for modern appearance
|
728 |
-
custom_css = """
|
729 |
-
.gradio-container {
|
730 |
-
max-width: 1400px;
|
731 |
-
margin: auto;
|
732 |
-
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
733 |
-
}
|
734 |
-
|
735 |
-
.studio-header {
|
736 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
737 |
-
color: white;
|
738 |
-
padding: 2rem;
|
739 |
-
border-radius: 15px;
|
740 |
-
margin-bottom: 2rem;
|
741 |
-
text-align: center;
|
742 |
-
box-shadow: 0 8px 32px rgba(0,0,0,0.1);
|
743 |
-
}
|
744 |
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
753 |
-
|
754 |
-
|
755 |
-
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
-
.step-header {
|
760 |
-
display: flex;
|
761 |
-
align-items: center;
|
762 |
-
margin-bottom: 1rem;
|
763 |
-
font-size: 1.2em;
|
764 |
-
font-weight: 600;
|
765 |
-
color: #4c51bf;
|
766 |
-
}
|
767 |
-
|
768 |
-
.step-number {
|
769 |
-
background: #667eea;
|
770 |
-
color: white;
|
771 |
-
border-radius: 50%;
|
772 |
-
width: 30px;
|
773 |
-
height: 30px;
|
774 |
-
display: flex;
|
775 |
-
align-items: center;
|
776 |
-
justify-content: center;
|
777 |
-
margin-right: 1rem;
|
778 |
-
font-weight: bold;
|
779 |
-
}
|
780 |
-
|
781 |
-
.feature-grid {
|
782 |
-
display: grid;
|
783 |
-
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
|
784 |
-
gap: 1rem;
|
785 |
-
margin: 1rem 0;
|
786 |
-
}
|
787 |
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
795 |
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
804 |
|
805 |
-
|
806 |
-
|
807 |
-
|
808 |
-
|
809 |
-
|
810 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
811 |
|
812 |
-
|
813 |
-
|
814 |
-
|
815 |
-
|
816 |
-
|
|
|
|
|
|
|
|
|
|
|
817 |
|
818 |
-
|
819 |
-
|
820 |
-
|
821 |
-
|
822 |
-
|
823 |
-
|
824 |
-
|
825 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
826 |
|
827 |
-
|
828 |
-
|
829 |
-
|
830 |
-
|
831 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
832 |
|
833 |
-
|
834 |
-
|
835 |
-
|
836 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
837 |
|
838 |
-
|
839 |
-
|
840 |
-
border: 1px solid #e2e8f0;
|
841 |
-
border-radius: 8px;
|
842 |
-
padding: 1rem;
|
843 |
-
margin: 0.5rem 0;
|
844 |
-
cursor: pointer;
|
845 |
-
}
|
846 |
|
847 |
-
|
848 |
-
|
849 |
-
|
|
|
|
|
|
|
|
|
850 |
}
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
border: 1px solid #9ae6b4;
|
855 |
-
color: #276749;
|
856 |
-
padding: 1rem;
|
857 |
-
border-radius: 8px;
|
858 |
-
margin: 1rem 0;
|
859 |
}
|
860 |
-
|
861 |
-
|
862 |
-
|
863 |
-
border: 1px solid #feb2b2;
|
864 |
-
color: #c53030;
|
865 |
-
padding: 1rem;
|
866 |
-
border-radius: 8px;
|
867 |
-
margin: 1rem 0;
|
868 |
}
|
869 |
"""
|
870 |
|
871 |
-
# Project state for UI
|
872 |
project_state = gr.State({})
|
873 |
|
874 |
-
with gr.Blocks(css=
|
875 |
|
876 |
# Header
|
877 |
gr.HTML("""
|
878 |
<div class="studio-header">
|
879 |
<h1>🚀 AI Dataset Studio</h1>
|
880 |
-
<p>Create high-quality training datasets without coding
|
881 |
-
<p style="opacity: 0.9; font-size: 0.9em;">Web Scraping → Data Processing → Annotation → ML-Ready Datasets</p>
|
882 |
</div>
|
883 |
""")
|
884 |
|
885 |
-
# Main workflow tabs
|
886 |
with gr.Tabs() as main_tabs:
|
887 |
|
888 |
-
#
|
889 |
-
with gr.Tab("🎯 Project Setup"
|
890 |
-
gr.HTML('<div class="step-header"
|
891 |
|
892 |
with gr.Row():
|
893 |
with gr.Column(scale=2):
|
894 |
-
gr.HTML("""
|
895 |
-
<div class="workflow-card">
|
896 |
-
<h3>📋 Project Configuration</h3>
|
897 |
-
<p>Define your dataset project and choose the type of AI task you're building for.</p>
|
898 |
-
</div>
|
899 |
-
""")
|
900 |
-
|
901 |
project_name = gr.Textbox(
|
902 |
label="Project Name",
|
903 |
-
placeholder="
|
904 |
-
value="
|
905 |
)
|
906 |
|
907 |
-
# Template selection with visual cards
|
908 |
-
gr.HTML("<h4>🎨 Choose Your Dataset Template</h4>")
|
909 |
-
|
910 |
template_choice = gr.Radio(
|
911 |
choices=[
|
912 |
("📊 Text Classification", "text_classification"),
|
@@ -916,192 +704,97 @@ def create_modern_interface():
|
|
916 |
("📝 Text Summarization", "summarization")
|
917 |
],
|
918 |
label="Dataset Type",
|
919 |
-
value="text_classification"
|
920 |
-
interactive=True
|
921 |
-
)
|
922 |
-
|
923 |
-
create_project_btn = gr.Button(
|
924 |
-
"🚀 Create Project",
|
925 |
-
variant="primary",
|
926 |
-
size="lg"
|
927 |
)
|
928 |
|
|
|
929 |
project_status = gr.Markdown("")
|
930 |
|
931 |
with gr.Column(scale=1):
|
932 |
gr.HTML("""
|
933 |
<div class="workflow-card">
|
934 |
<h3>💡 Template Guide</h3>
|
935 |
-
<
|
936 |
-
|
937 |
-
|
938 |
-
|
939 |
-
|
940 |
-
</div>
|
941 |
-
<div class="feature-item">
|
942 |
-
<h4>😊 Sentiment Analysis</h4>
|
943 |
-
<p>Analyze emotional tone and opinions</p>
|
944 |
-
<small>Great for: Review analysis, social media monitoring</small>
|
945 |
-
</div>
|
946 |
-
<div class="feature-item">
|
947 |
-
<h4>👥 Named Entity Recognition</h4>
|
948 |
-
<p>Identify people, places, organizations</p>
|
949 |
-
<small>Great for: Information extraction, content tagging</small>
|
950 |
-
</div>
|
951 |
-
</div>
|
952 |
</div>
|
953 |
""")
|
954 |
|
955 |
-
#
|
956 |
-
with gr.Tab("🕷️ Data Collection"
|
957 |
-
gr.HTML('<div class="step-header"
|
958 |
|
959 |
with gr.Row():
|
960 |
with gr.Column(scale=2):
|
961 |
-
gr.
|
962 |
-
|
963 |
-
|
964 |
-
|
965 |
-
|
966 |
-
""")
|
967 |
-
|
968 |
-
# URL input methods
|
969 |
-
with gr.Tabs():
|
970 |
-
with gr.Tab("📝 Manual Input"):
|
971 |
-
urls_input = gr.Textbox(
|
972 |
-
label="URLs to Scrape",
|
973 |
-
placeholder="https://example.com/article1\nhttps://example.com/article2\n...",
|
974 |
-
lines=8,
|
975 |
-
info="Enter one URL per line"
|
976 |
-
)
|
977 |
-
|
978 |
-
with gr.Tab("📎 File Upload"):
|
979 |
-
urls_file = gr.File(
|
980 |
-
label="Upload URL List",
|
981 |
-
file_types=[".txt", ".csv"],
|
982 |
-
info="Upload a text file with URLs (one per line) or CSV with 'url' column"
|
983 |
-
)
|
984 |
-
|
985 |
-
scrape_btn = gr.Button("🚀 Start Scraping", variant="primary", size="lg")
|
986 |
|
987 |
-
|
988 |
-
scraping_progress = gr.Progress()
|
989 |
scraping_status = gr.Markdown("")
|
990 |
|
991 |
with gr.Column(scale=1):
|
992 |
-
gr.HTML("""
|
993 |
-
<div class="workflow-card">
|
994 |
-
<h3>⚡ Features</h3>
|
995 |
-
<ul style="list-style: none; padding: 0;">
|
996 |
-
<li>✅ Smart content extraction</li>
|
997 |
-
<li>✅ Quality scoring</li>
|
998 |
-
<li>✅ Duplicate detection</li>
|
999 |
-
<li>✅ Security validation</li>
|
1000 |
-
<li>✅ Metadata extraction</li>
|
1001 |
-
<li>✅ Rate limiting</li>
|
1002 |
-
</ul>
|
1003 |
-
</div>
|
1004 |
-
""")
|
1005 |
-
|
1006 |
-
# Quick stats
|
1007 |
collection_stats = gr.HTML("")
|
1008 |
|
1009 |
-
#
|
1010 |
-
with gr.Tab("⚙️ Data Processing"
|
1011 |
-
gr.HTML('<div class="step-header"
|
1012 |
|
1013 |
with gr.Row():
|
1014 |
with gr.Column(scale=2):
|
1015 |
-
gr.HTML("""
|
1016 |
-
<div class="workflow-card">
|
1017 |
-
<h3>🔧 Processing Options</h3>
|
1018 |
-
<p>Configure how to clean and enhance your scraped data with AI-powered analysis.</p>
|
1019 |
-
</div>
|
1020 |
-
""")
|
1021 |
-
|
1022 |
-
# Processing options
|
1023 |
with gr.Row():
|
1024 |
with gr.Column():
|
1025 |
-
clean_text = gr.Checkbox(label="🧹
|
1026 |
-
quality_filter = gr.Checkbox(label="🎯 Quality
|
1027 |
detect_language = gr.Checkbox(label="🌍 Language Detection", value=True)
|
1028 |
|
1029 |
with gr.Column():
|
1030 |
add_sentiment = gr.Checkbox(label="😊 Sentiment Analysis", value=False)
|
1031 |
extract_entities = gr.Checkbox(label="👥 Entity Extraction", value=False)
|
1032 |
-
deduplicate = gr.Checkbox(label="🔄 Remove Duplicates", value=True)
|
1033 |
|
1034 |
-
process_btn = gr.Button("⚙️ Process Data", variant="primary"
|
1035 |
processing_status = gr.Markdown("")
|
1036 |
|
1037 |
with gr.Column(scale=1):
|
1038 |
-
gr.HTML("""
|
1039 |
-
<div class="workflow-card">
|
1040 |
-
<h3>📊 Processing Stats</h3>
|
1041 |
-
<div id="processing-stats"></div>
|
1042 |
-
</div>
|
1043 |
-
""")
|
1044 |
-
|
1045 |
processing_stats = gr.HTML("")
|
1046 |
|
1047 |
-
#
|
1048 |
-
with gr.Tab("👀 Data Preview"
|
1049 |
-
gr.HTML('<div class="step-header"
|
1050 |
|
1051 |
with gr.Row():
|
1052 |
with gr.Column(scale=2):
|
1053 |
-
gr.
|
1054 |
-
<div class="workflow-card">
|
1055 |
-
<h3>📋 Dataset Preview</h3>
|
1056 |
-
<p>Review your processed data before annotation or export.</p>
|
1057 |
-
</div>
|
1058 |
-
""")
|
1059 |
-
|
1060 |
-
refresh_preview_btn = gr.Button("🔄 Refresh Preview", variant="secondary")
|
1061 |
|
1062 |
-
# Data preview table
|
1063 |
data_preview = gr.DataFrame(
|
1064 |
-
headers=["Title", "Content Preview", "
|
1065 |
-
label="Dataset Preview"
|
1066 |
-
interactive=False
|
1067 |
)
|
1068 |
|
1069 |
with gr.Column(scale=1):
|
1070 |
-
gr.HTML("""
|
1071 |
-
<div class="workflow-card">
|
1072 |
-
<h3>📈 Dataset Statistics</h3>
|
1073 |
-
</div>
|
1074 |
-
""")
|
1075 |
-
|
1076 |
dataset_stats = gr.JSON(label="Statistics")
|
1077 |
|
1078 |
-
#
|
1079 |
-
with gr.Tab("📤 Export Dataset"
|
1080 |
-
gr.HTML('<div class="step-header"
|
1081 |
|
1082 |
with gr.Row():
|
1083 |
with gr.Column(scale=2):
|
1084 |
-
gr.HTML("""
|
1085 |
-
<div class="workflow-card">
|
1086 |
-
<h3>💾 Export Options</h3>
|
1087 |
-
<p>Export your dataset in various formats for different ML frameworks and platforms.</p>
|
1088 |
-
</div>
|
1089 |
-
""")
|
1090 |
-
|
1091 |
-
# Export format selection
|
1092 |
export_format = gr.Radio(
|
1093 |
choices=[
|
1094 |
-
("🤗 HuggingFace Datasets", "huggingface_datasets"),
|
1095 |
("📄 JSON", "json"),
|
1096 |
("📊 CSV", "csv"),
|
1097 |
("📋 JSONL", "jsonl"),
|
1098 |
-
("
|
1099 |
],
|
1100 |
label="Export Format",
|
1101 |
value="json"
|
1102 |
)
|
1103 |
|
1104 |
-
# Template for export
|
1105 |
export_template = gr.Dropdown(
|
1106 |
choices=[
|
1107 |
"text_classification",
|
@@ -1110,162 +803,126 @@ def create_modern_interface():
|
|
1110 |
"question_answering",
|
1111 |
"summarization"
|
1112 |
],
|
1113 |
-
label="
|
1114 |
value="text_classification"
|
1115 |
)
|
1116 |
|
1117 |
-
export_btn = gr.Button("📤 Export Dataset", variant="primary"
|
1118 |
-
|
1119 |
-
# Export results
|
1120 |
export_status = gr.Markdown("")
|
1121 |
-
export_file = gr.File(label="Download
|
1122 |
|
1123 |
with gr.Column(scale=1):
|
1124 |
gr.HTML("""
|
1125 |
<div class="workflow-card">
|
1126 |
-
<h3>📋 Export
|
1127 |
-
<
|
1128 |
-
|
1129 |
-
|
1130 |
-
</
|
1131 |
-
<div class="feature-item">
|
1132 |
-
<h4>📄 JSON/JSONL</h4>
|
1133 |
-
<p>Universal format for any framework</p>
|
1134 |
-
</div>
|
1135 |
-
<div class="feature-item">
|
1136 |
-
<h4>📊 CSV</h4>
|
1137 |
-
<p>Easy analysis in Excel/Pandas</p>
|
1138 |
-
</div>
|
1139 |
</div>
|
1140 |
""")
|
1141 |
|
1142 |
# Event handlers
|
1143 |
def create_project(name, template):
|
1144 |
-
"""Create new project"""
|
1145 |
if not name.strip():
|
1146 |
return "❌ Please enter a project name", {}
|
1147 |
|
1148 |
project = studio.start_new_project(name.strip(), template)
|
1149 |
status = f"""
|
1150 |
-
✅ **Project Created
|
1151 |
|
1152 |
-
**
|
1153 |
**Type:** {template.replace('_', ' ').title()}
|
1154 |
-
**ID:** {project['id'][:8]}...
|
1155 |
-
**Created:** {project['created_at'][:19]}
|
1156 |
|
1157 |
-
👉
|
1158 |
"""
|
1159 |
return status, project
|
1160 |
|
1161 |
-
def scrape_urls_handler(urls_text,
|
1162 |
-
"""Handle URL scraping"""
|
1163 |
if not project:
|
1164 |
-
return "❌
|
1165 |
-
|
1166 |
-
# Process URLs from text input or file
|
1167 |
-
urls = []
|
1168 |
-
if urls_text:
|
1169 |
-
urls = [url.strip() for url in urls_text.split('\n') if url.strip()]
|
1170 |
-
elif urls_file:
|
1171 |
-
# Handle file upload (simplified)
|
1172 |
-
try:
|
1173 |
-
content = urls_file.read().decode('utf-8')
|
1174 |
-
urls = [url.strip() for url in content.split('\n') if url.strip()]
|
1175 |
-
except:
|
1176 |
-
return "❌ Error reading uploaded file", ""
|
1177 |
|
|
|
1178 |
if not urls:
|
1179 |
return "❌ No URLs provided", ""
|
1180 |
|
1181 |
-
# Progress callback
|
1182 |
def progress_callback(pct, msg):
|
1183 |
progress(pct, desc=msg)
|
1184 |
|
1185 |
-
|
1186 |
-
success_count, errors = studio.scrape_urls(urls, progress_callback)
|
1187 |
|
1188 |
-
if
|
1189 |
-
|
1190 |
-
<div
|
1191 |
<h3>✅ Scraping Complete</h3>
|
1192 |
-
<p><strong>{
|
1193 |
-
<p><strong>{len(urls) - success_count}</strong> failed</p>
|
1194 |
</div>
|
1195 |
"""
|
1196 |
|
1197 |
status = f"""
|
1198 |
✅ **Scraping Complete!**
|
1199 |
|
1200 |
-
**
|
1201 |
-
**Failed:** {len(urls) -
|
1202 |
|
1203 |
-
👉
|
1204 |
"""
|
1205 |
|
1206 |
-
return status,
|
1207 |
else:
|
1208 |
return f"❌ Scraping failed: {', '.join(errors)}", ""
|
1209 |
|
1210 |
-
def process_data_handler(
|
1211 |
-
add_sentiment, extract_entities, deduplicate, project):
|
1212 |
-
"""Handle data processing"""
|
1213 |
if not project:
|
1214 |
-
return "❌
|
1215 |
|
1216 |
if not studio.scraped_items:
|
1217 |
-
return "❌ No
|
1218 |
|
1219 |
-
# Configure processing options
|
1220 |
options = {
|
1221 |
-
'clean_text':
|
1222 |
-
'quality_filter':
|
1223 |
-
'detect_language':
|
1224 |
-
'add_sentiment':
|
1225 |
-
'extract_entities':
|
1226 |
-
'deduplicate': deduplicate
|
1227 |
}
|
1228 |
|
1229 |
-
|
1230 |
-
processed_count = studio.process_data(options)
|
1231 |
|
1232 |
-
if
|
1233 |
stats = studio.get_data_statistics()
|
1234 |
stats_html = f"""
|
1235 |
-
<div
|
1236 |
<h3>⚙️ Processing Complete</h3>
|
1237 |
-
<p><strong>{
|
1238 |
-
<p>
|
1239 |
-
<p>Avg Words: <strong>{stats.get('avg_word_count', 0)}</strong></p>
|
1240 |
</div>
|
1241 |
"""
|
1242 |
|
1243 |
status = f"""
|
1244 |
✅ **Processing Complete!**
|
1245 |
|
1246 |
-
**Processed
|
1247 |
-
**
|
1248 |
-
**Average word count:** {stats.get('avg_word_count', 0)}
|
1249 |
|
1250 |
-
👉
|
1251 |
"""
|
1252 |
|
1253 |
return status, stats_html
|
1254 |
else:
|
1255 |
-
return "❌ No items passed
|
1256 |
|
1257 |
def refresh_preview_handler(project):
|
1258 |
-
"""Refresh data preview"""
|
1259 |
if not project:
|
1260 |
return None, {}
|
1261 |
|
1262 |
-
|
1263 |
stats = studio.get_data_statistics()
|
1264 |
|
1265 |
-
if
|
1266 |
-
# Convert to DataFrame format
|
1267 |
df_data = []
|
1268 |
-
for item in
|
1269 |
df_data.append([
|
1270 |
item['title'][:50] + "..." if len(item['title']) > 50 else item['title'],
|
1271 |
item['content_preview'],
|
@@ -1278,26 +935,23 @@ def create_modern_interface():
|
|
1278 |
|
1279 |
return None, {}
|
1280 |
|
1281 |
-
def
|
1282 |
-
"""Handle dataset export"""
|
1283 |
if not project:
|
1284 |
-
return "❌
|
1285 |
|
1286 |
if not studio.processed_items and not studio.scraped_items:
|
1287 |
-
return "❌ No data to export
|
1288 |
|
1289 |
try:
|
1290 |
-
|
1291 |
-
filename = studio.export_dataset(export_template, export_format)
|
1292 |
|
1293 |
status = f"""
|
1294 |
✅ **Export Successful!**
|
1295 |
|
1296 |
-
**Format:** {
|
1297 |
-
**Template:** {export_template.replace('_', ' ').title()}
|
1298 |
**File:** {filename}
|
1299 |
|
1300 |
-
📥
|
1301 |
"""
|
1302 |
|
1303 |
return status, filename
|
@@ -1305,7 +959,7 @@ def create_modern_interface():
|
|
1305 |
except Exception as e:
|
1306 |
return f"❌ Export failed: {str(e)}", None
|
1307 |
|
1308 |
-
# Connect
|
1309 |
create_project_btn.click(
|
1310 |
fn=create_project,
|
1311 |
inputs=[project_name, template_choice],
|
@@ -1314,43 +968,36 @@ def create_modern_interface():
|
|
1314 |
|
1315 |
scrape_btn.click(
|
1316 |
fn=scrape_urls_handler,
|
1317 |
-
inputs=[urls_input,
|
1318 |
outputs=[scraping_status, collection_stats]
|
1319 |
)
|
1320 |
|
1321 |
process_btn.click(
|
1322 |
fn=process_data_handler,
|
1323 |
inputs=[clean_text, quality_filter, detect_language,
|
1324 |
-
add_sentiment, extract_entities,
|
1325 |
outputs=[processing_status, processing_stats]
|
1326 |
)
|
1327 |
|
1328 |
-
|
1329 |
fn=refresh_preview_handler,
|
1330 |
inputs=[project_state],
|
1331 |
outputs=[data_preview, dataset_stats]
|
1332 |
)
|
1333 |
|
1334 |
export_btn.click(
|
1335 |
-
fn=
|
1336 |
inputs=[export_format, export_template, project_state],
|
1337 |
outputs=[export_status, export_file]
|
1338 |
)
|
1339 |
-
|
1340 |
-
# Auto-refresh preview when processing completes
|
1341 |
-
processing_status.change(
|
1342 |
-
fn=refresh_preview_handler,
|
1343 |
-
inputs=[project_state],
|
1344 |
-
outputs=[data_preview, dataset_stats]
|
1345 |
-
)
|
1346 |
|
1347 |
return interface
|
1348 |
|
1349 |
-
# Launch
|
1350 |
if __name__ == "__main__":
|
1351 |
logger.info("🚀 Starting AI Dataset Studio...")
|
1352 |
|
1353 |
-
# Check
|
1354 |
features = []
|
1355 |
if HAS_TRANSFORMERS:
|
1356 |
features.append("✅ AI Models")
|
@@ -1365,11 +1012,15 @@ if __name__ == "__main__":
|
|
1365 |
if HAS_DATASETS:
|
1366 |
features.append("✅ HuggingFace Integration")
|
1367 |
else:
|
1368 |
-
features.append("⚠️ Standard Export
|
1369 |
|
1370 |
logger.info(f"📊 Features: {' | '.join(features)}")
|
1371 |
|
1372 |
try:
|
|
|
|
|
|
|
|
|
1373 |
interface = create_modern_interface()
|
1374 |
logger.info("✅ Interface created successfully")
|
1375 |
|
@@ -1377,10 +1028,10 @@ if __name__ == "__main__":
|
|
1377 |
server_name="0.0.0.0",
|
1378 |
server_port=7860,
|
1379 |
share=False,
|
1380 |
-
show_error=True
|
1381 |
-
debug=False
|
1382 |
)
|
1383 |
|
1384 |
except Exception as e:
|
1385 |
-
logger.error(f"❌ Failed to launch
|
|
|
1386 |
raise
|
|
|
1 |
"""
|
2 |
+
AI Dataset Studio - Complete Application
|
3 |
+
Fixed version with all classes properly defined
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
"""
|
5 |
|
6 |
import gradio as gr
|
|
|
21 |
import time
|
22 |
from collections import defaultdict
|
23 |
import io
|
|
|
24 |
|
25 |
# Optional imports with fallbacks
|
26 |
try:
|
27 |
from transformers import pipeline, AutoTokenizer, AutoModel
|
|
|
28 |
HAS_TRANSFORMERS = True
|
29 |
except ImportError:
|
30 |
HAS_TRANSFORMERS = False
|
|
|
32 |
try:
|
33 |
import nltk
|
34 |
from nltk.tokenize import sent_tokenize, word_tokenize
|
|
|
35 |
HAS_NLTK = True
|
36 |
except ImportError:
|
37 |
HAS_NLTK = False
|
|
|
81 |
"""Template for dataset creation"""
|
82 |
name: str
|
83 |
description: str
|
84 |
+
task_type: str
|
85 |
required_fields: List[str]
|
86 |
optional_fields: List[str]
|
87 |
example_format: Dict[str, Any]
|
88 |
instructions: str
|
89 |
|
90 |
+
class SecurityValidator:
|
91 |
+
"""Security validation for URLs and content"""
|
92 |
+
|
93 |
+
ALLOWED_SCHEMES = {'http', 'https'}
|
94 |
+
BLOCKED_DOMAINS = {
|
95 |
+
'localhost', '127.0.0.1', '0.0.0.0',
|
96 |
+
'192.168.', '10.', '172.16.', '172.17.',
|
97 |
+
'172.18.', '172.19.', '172.20.', '172.21.',
|
98 |
+
'172.22.', '172.23.', '172.24.', '172.25.',
|
99 |
+
'172.26.', '172.27.', '172.28.', '172.29.',
|
100 |
+
'172.30.', '172.31.'
|
101 |
+
}
|
102 |
+
|
103 |
+
@classmethod
|
104 |
+
def validate_url(cls, url: str) -> Tuple[bool, str]:
|
105 |
+
"""Validate URL for security concerns"""
|
106 |
+
try:
|
107 |
+
parsed = urlparse(url)
|
108 |
+
|
109 |
+
if parsed.scheme not in cls.ALLOWED_SCHEMES:
|
110 |
+
return False, f"Invalid scheme: {parsed.scheme}"
|
111 |
+
|
112 |
+
hostname = parsed.hostname or ''
|
113 |
+
if any(blocked in hostname for blocked in cls.BLOCKED_DOMAINS):
|
114 |
+
return False, "Access to internal networks not allowed"
|
115 |
+
|
116 |
+
if not parsed.netloc:
|
117 |
+
return False, "Invalid URL format"
|
118 |
+
|
119 |
+
return True, "URL is valid"
|
120 |
+
|
121 |
+
except Exception as e:
|
122 |
+
return False, f"URL validation error: {str(e)}"
|
123 |
+
|
124 |
class WebScraperEngine:
|
125 |
+
"""Advanced web scraping engine"""
|
126 |
|
127 |
def __init__(self):
|
128 |
self.session = requests.Session()
|
129 |
self.session.headers.update({
|
130 |
+
'User-Agent': 'Mozilla/5.0 (compatible; AI-DatasetStudio/1.0)',
|
131 |
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
|
132 |
'Accept-Language': 'en-US,en;q=0.5',
|
|
|
133 |
'Connection': 'keep-alive',
|
134 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
def scrape_url(self, url: str) -> Optional[ScrapedItem]:
|
137 |
+
"""Scrape a single URL"""
|
138 |
try:
|
139 |
# Validate URL
|
140 |
+
is_valid, validation_msg = SecurityValidator.validate_url(url)
|
141 |
+
if not is_valid:
|
142 |
+
raise ValueError(f"Security validation failed: {validation_msg}")
|
143 |
|
144 |
# Fetch content
|
145 |
response = self.session.get(url, timeout=15)
|
|
|
148 |
# Parse HTML
|
149 |
soup = BeautifulSoup(response.content, 'html.parser')
|
150 |
|
151 |
+
# Extract data
|
152 |
title = self._extract_title(soup)
|
153 |
content = self._extract_content(soup)
|
154 |
metadata = self._extract_metadata(soup, response)
|
155 |
|
156 |
+
# Create item
|
157 |
item = ScrapedItem(
|
158 |
id=str(uuid.uuid4()),
|
159 |
url=url,
|
|
|
172 |
return None
|
173 |
|
174 |
def batch_scrape(self, urls: List[str], progress_callback=None) -> List[ScrapedItem]:
|
175 |
+
"""Scrape multiple URLs"""
|
176 |
results = []
|
177 |
total = len(urls)
|
178 |
|
|
|
184 |
if item:
|
185 |
results.append(item)
|
186 |
|
187 |
+
time.sleep(1) # Rate limiting
|
|
|
188 |
|
189 |
return results
|
190 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
def _extract_title(self, soup: BeautifulSoup) -> str:
|
192 |
"""Extract page title"""
|
193 |
+
title_tag = soup.find('title')
|
194 |
+
if title_tag:
|
195 |
+
return title_tag.get_text().strip()
|
|
|
|
|
|
|
|
|
196 |
|
197 |
+
h1_tag = soup.find('h1')
|
198 |
+
if h1_tag:
|
199 |
+
return h1_tag.get_text().strip()
|
|
|
|
|
|
|
|
|
200 |
|
201 |
return "Untitled"
|
202 |
|
203 |
def _extract_content(self, soup: BeautifulSoup) -> str:
|
204 |
+
"""Extract main content"""
|
205 |
# Remove unwanted elements
|
206 |
for element in soup(['script', 'style', 'nav', 'header', 'footer', 'aside']):
|
207 |
element.decompose()
|
208 |
|
209 |
+
# Try content selectors
|
210 |
content_selectors = [
|
211 |
+
'article', 'main', '.content', '.post-content',
|
212 |
+
'.entry-content', '.article-body'
|
|
|
|
|
|
|
|
|
|
|
213 |
]
|
214 |
|
215 |
for selector in content_selectors:
|
|
|
227 |
return self._clean_text(soup.get_text(separator=' ', strip=True))
|
228 |
|
229 |
def _extract_metadata(self, soup: BeautifulSoup, response) -> Dict[str, Any]:
|
230 |
+
"""Extract metadata"""
|
231 |
metadata = {
|
232 |
'domain': urlparse(response.url).netloc,
|
233 |
'status_code': response.status_code,
|
|
|
234 |
'extracted_at': datetime.now().isoformat()
|
235 |
}
|
236 |
|
237 |
# Extract meta tags
|
238 |
+
for tag in ['description', 'keywords', 'author']:
|
239 |
+
element = soup.find('meta', attrs={'name': tag})
|
|
|
240 |
if element:
|
241 |
metadata[tag] = element.get('content', '')
|
242 |
|
|
|
244 |
|
245 |
def _clean_text(self, text: str) -> str:
|
246 |
"""Clean extracted text"""
|
|
|
247 |
text = re.sub(r'\s+', ' ', text)
|
248 |
+
text = re.sub(r'Subscribe.*?newsletter', '', text, flags=re.IGNORECASE)
|
249 |
+
text = re.sub(r'Click here.*?more', '', text, flags=re.IGNORECASE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
return text.strip()
|
251 |
|
252 |
def _assess_quality(self, content: str) -> float:
|
253 |
+
"""Assess content quality"""
|
254 |
if not content:
|
255 |
return 0.0
|
256 |
|
257 |
score = 0.0
|
|
|
|
|
258 |
word_count = len(content.split())
|
259 |
+
|
260 |
if word_count >= 50:
|
261 |
+
score += 0.4
|
262 |
elif word_count >= 20:
|
263 |
+
score += 0.2
|
264 |
|
|
|
265 |
sentence_count = len(re.split(r'[.!?]+', content))
|
266 |
if sentence_count >= 3:
|
267 |
+
score += 0.3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
|
269 |
+
if re.search(r'[A-Z][a-z]+', content):
|
270 |
+
score += 0.3
|
|
|
|
|
271 |
|
272 |
return min(score, 1.0)
|
273 |
|
274 |
class DataProcessor:
|
275 |
+
"""Data processing pipeline"""
|
276 |
|
277 |
def __init__(self):
|
|
|
278 |
self.sentiment_analyzer = None
|
279 |
self.ner_model = None
|
280 |
self._load_models()
|
281 |
|
282 |
def _load_models(self):
|
283 |
+
"""Load NLP models"""
|
284 |
if not HAS_TRANSFORMERS:
|
285 |
+
logger.warning("⚠️ Transformers not available")
|
286 |
return
|
287 |
|
288 |
try:
|
|
|
289 |
self.sentiment_analyzer = pipeline(
|
290 |
"sentiment-analysis",
|
291 |
model="cardiffnlp/twitter-roberta-base-sentiment-latest"
|
292 |
)
|
293 |
+
logger.info("✅ Sentiment model loaded")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
except Exception as e:
|
295 |
+
logger.warning(f"⚠️ Could not load sentiment model: {e}")
|
296 |
|
297 |
+
def process_items(self, items: List[ScrapedItem], options: Dict[str, bool]) -> List[ScrapedItem]:
|
298 |
+
"""Process scraped items"""
|
299 |
+
processed = []
|
300 |
|
301 |
for item in items:
|
302 |
+
try:
|
303 |
+
# Clean text
|
304 |
+
if options.get('clean_text', True):
|
305 |
+
item.content = self._clean_text_advanced(item.content)
|
306 |
+
|
307 |
+
# Quality filter
|
308 |
+
if options.get('quality_filter', True) and item.quality_score < 0.3:
|
309 |
+
continue
|
310 |
+
|
311 |
+
# Add sentiment
|
312 |
+
if options.get('add_sentiment', False) and self.sentiment_analyzer:
|
313 |
+
sentiment = self._analyze_sentiment(item.content)
|
314 |
+
item.metadata['sentiment'] = sentiment
|
315 |
+
|
316 |
+
# Language detection
|
317 |
+
if options.get('detect_language', True):
|
318 |
+
item.language = self._detect_language(item.content)
|
319 |
+
|
320 |
+
processed.append(item)
|
321 |
+
|
322 |
+
except Exception as e:
|
323 |
+
logger.error(f"Error processing item {item.id}: {e}")
|
324 |
+
continue
|
325 |
|
326 |
+
return processed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
|
328 |
def _clean_text_advanced(self, text: str) -> str:
|
329 |
"""Advanced text cleaning"""
|
|
|
330 |
text = re.sub(r'http\S+|www\.\S+', '', text)
|
|
|
|
|
331 |
text = re.sub(r'\S+@\S+', '', text)
|
|
|
|
|
|
|
|
|
|
|
|
|
332 |
text = re.sub(r'\s+', ' ', text)
|
333 |
+
return text.strip()
|
|
|
|
|
|
|
|
|
|
|
334 |
|
335 |
def _analyze_sentiment(self, text: str) -> Dict[str, Any]:
|
336 |
+
"""Analyze sentiment"""
|
337 |
try:
|
|
|
338 |
text_sample = text[:512]
|
339 |
result = self.sentiment_analyzer(text_sample)[0]
|
340 |
return {
|
|
|
344 |
except:
|
345 |
return {'label': 'UNKNOWN', 'score': 0.0}
|
346 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
def _detect_language(self, text: str) -> str:
|
348 |
"""Simple language detection"""
|
|
|
349 |
if re.search(r'[а-яё]', text.lower()):
|
350 |
return 'ru'
|
351 |
elif re.search(r'[ñáéíóúü]', text.lower()):
|
352 |
return 'es'
|
353 |
+
return 'en'
|
|
|
|
|
|
|
354 |
|
355 |
class AnnotationEngine:
|
356 |
+
"""Annotation tools for dataset creation"""
|
357 |
|
358 |
def __init__(self):
|
359 |
self.templates = self._load_templates()
|
360 |
|
361 |
def _load_templates(self) -> Dict[str, DatasetTemplate]:
|
362 |
+
"""Load dataset templates"""
|
363 |
templates = {
|
364 |
'text_classification': DatasetTemplate(
|
365 |
name="Text Classification",
|
366 |
+
description="Classify text into categories",
|
367 |
task_type="classification",
|
368 |
required_fields=["text", "label"],
|
369 |
optional_fields=["confidence", "metadata"],
|
370 |
example_format={"text": "Sample text", "label": "positive"},
|
371 |
+
instructions="Label each text with appropriate category"
|
372 |
),
|
373 |
'sentiment_analysis': DatasetTemplate(
|
374 |
name="Sentiment Analysis",
|
375 |
+
description="Analyze emotional tone",
|
376 |
task_type="classification",
|
377 |
required_fields=["text", "sentiment"],
|
378 |
optional_fields=["confidence", "aspects"],
|
379 |
example_format={"text": "I love this!", "sentiment": "positive"},
|
380 |
+
instructions="Classify sentiment as positive, negative, or neutral"
|
381 |
),
|
382 |
'named_entity_recognition': DatasetTemplate(
|
383 |
name="Named Entity Recognition",
|
384 |
+
description="Identify named entities",
|
385 |
task_type="ner",
|
386 |
required_fields=["text", "entities"],
|
387 |
optional_fields=["metadata"],
|
388 |
example_format={
|
389 |
+
"text": "John works at OpenAI",
|
390 |
+
"entities": [{"text": "John", "label": "PERSON"}]
|
|
|
|
|
|
|
391 |
},
|
392 |
+
instructions="Mark all named entities"
|
393 |
),
|
394 |
'question_answering': DatasetTemplate(
|
395 |
name="Question Answering",
|
396 |
+
description="Create Q&A pairs",
|
397 |
task_type="qa",
|
398 |
required_fields=["context", "question", "answer"],
|
399 |
optional_fields=["answer_start", "metadata"],
|
|
|
402 |
"question": "What is the capital of France?",
|
403 |
"answer": "Paris"
|
404 |
},
|
405 |
+
instructions="Create meaningful questions and answers"
|
406 |
),
|
407 |
'summarization': DatasetTemplate(
|
408 |
name="Text Summarization",
|
409 |
+
description="Create summaries",
|
410 |
task_type="summarization",
|
411 |
required_fields=["text", "summary"],
|
412 |
optional_fields=["summary_type", "length"],
|
413 |
example_format={
|
414 |
"text": "Long article text...",
|
415 |
+
"summary": "Brief summary"
|
416 |
},
|
417 |
+
instructions="Write clear, concise summaries"
|
418 |
)
|
419 |
}
|
420 |
return templates
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
|
422 |
class DatasetExporter:
|
423 |
+
"""Export datasets in various formats"""
|
424 |
|
425 |
def __init__(self):
|
426 |
self.supported_formats = [
|
427 |
+
'json', 'csv', 'jsonl', 'huggingface_datasets'
|
|
|
|
|
|
|
|
|
|
|
|
|
428 |
]
|
429 |
|
430 |
def export_dataset(self, items: List[ScrapedItem], template: DatasetTemplate,
|
431 |
export_format: str, annotations: Dict[str, Any] = None) -> str:
|
432 |
+
"""Export dataset"""
|
433 |
try:
|
434 |
+
dataset_data = self._prepare_data(items, template, annotations)
|
|
|
435 |
|
436 |
+
if export_format == 'json':
|
|
|
|
|
|
|
437 |
return self._export_json(dataset_data)
|
438 |
elif export_format == 'csv':
|
439 |
return self._export_csv(dataset_data)
|
440 |
elif export_format == 'jsonl':
|
441 |
return self._export_jsonl(dataset_data)
|
442 |
+
elif export_format == 'huggingface_datasets':
|
443 |
+
return self._export_huggingface(dataset_data, template)
|
444 |
else:
|
445 |
raise ValueError(f"Unsupported format: {export_format}")
|
446 |
|
|
|
448 |
logger.error(f"Export failed: {e}")
|
449 |
raise
|
450 |
|
451 |
+
def _prepare_data(self, items: List[ScrapedItem], template: DatasetTemplate,
|
452 |
+
annotations: Dict[str, Any] = None) -> List[Dict[str, Any]]:
|
453 |
+
"""Prepare data according to template"""
|
454 |
dataset_data = []
|
455 |
|
456 |
for item in items:
|
|
|
457 |
data_point = {
|
458 |
'text': item.content,
|
459 |
'title': item.title,
|
|
|
461 |
'metadata': item.metadata
|
462 |
}
|
463 |
|
|
|
464 |
if annotations and item.id in annotations:
|
465 |
+
data_point.update(annotations[item.id])
|
|
|
466 |
|
467 |
+
formatted = self._format_for_template(data_point, template)
|
468 |
+
if formatted:
|
469 |
+
dataset_data.append(formatted)
|
|
|
470 |
|
471 |
return dataset_data
|
472 |
|
473 |
def _format_for_template(self, data_point: Dict[str, Any], template: DatasetTemplate) -> Dict[str, Any]:
|
474 |
+
"""Format data according to template"""
|
475 |
formatted = {}
|
476 |
|
|
|
477 |
for field in template.required_fields:
|
478 |
if field in data_point:
|
479 |
formatted[field] = data_point[field]
|
480 |
elif field == 'text' and 'content' in data_point:
|
481 |
formatted[field] = data_point['content']
|
482 |
else:
|
|
|
483 |
return None
|
484 |
|
|
|
485 |
for field in template.optional_fields:
|
486 |
if field in data_point:
|
487 |
formatted[field] = data_point[field]
|
488 |
|
489 |
return formatted
|
490 |
|
491 |
+
def _export_json(self, data: List[Dict[str, Any]]) -> str:
|
492 |
+
"""Export as JSON"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
493 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
494 |
filename = f"dataset_{timestamp}.json"
|
495 |
|
496 |
with open(filename, 'w', encoding='utf-8') as f:
|
497 |
+
json.dump(data, f, indent=2, ensure_ascii=False)
|
498 |
|
499 |
return filename
|
500 |
|
501 |
+
def _export_csv(self, data: List[Dict[str, Any]]) -> str:
|
502 |
+
"""Export as CSV"""
|
503 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
504 |
filename = f"dataset_{timestamp}.csv"
|
505 |
|
506 |
+
df = pd.DataFrame(data)
|
507 |
df.to_csv(filename, index=False)
|
508 |
|
509 |
return filename
|
510 |
|
511 |
+
def _export_jsonl(self, data: List[Dict[str, Any]]) -> str:
|
512 |
+
"""Export as JSONL"""
|
513 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
514 |
filename = f"dataset_{timestamp}.jsonl"
|
515 |
|
516 |
with open(filename, 'w', encoding='utf-8') as f:
|
517 |
+
for item in data:
|
518 |
f.write(json.dumps(item, ensure_ascii=False) + '\n')
|
519 |
|
520 |
return filename
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
521 |
|
522 |
+
def _export_huggingface(self, data: List[Dict[str, Any]], template: DatasetTemplate) -> str:
|
523 |
+
"""Export as HuggingFace Dataset"""
|
524 |
+
if not HAS_DATASETS:
|
525 |
+
raise ImportError("datasets library not available")
|
526 |
+
|
527 |
+
dataset = Dataset.from_list(data)
|
528 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
529 |
+
dataset_name = f"{template.name.lower().replace(' ', '_')}_{timestamp}"
|
530 |
+
|
531 |
+
dataset.save_to_disk(dataset_name)
|
532 |
+
return dataset_name
|
533 |
+
|
534 |
+
class DatasetStudio:
|
535 |
+
"""Main application orchestrator"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
536 |
|
537 |
+
def __init__(self):
|
538 |
+
self.scraper = WebScraperEngine()
|
539 |
+
self.processor = DataProcessor()
|
540 |
+
self.annotator = AnnotationEngine()
|
541 |
+
self.exporter = DatasetExporter()
|
542 |
+
|
543 |
+
# Application state
|
544 |
+
self.scraped_items = []
|
545 |
+
self.processed_items = []
|
546 |
+
self.current_project = None
|
547 |
+
self.annotation_state = {}
|
548 |
+
|
549 |
+
logger.info("✅ DatasetStudio initialized successfully")
|
550 |
|
551 |
+
def start_new_project(self, project_name: str, template_type: str) -> Dict[str, Any]:
|
552 |
+
"""Start new project"""
|
553 |
+
self.current_project = {
|
554 |
+
'name': project_name,
|
555 |
+
'template': template_type,
|
556 |
+
'created_at': datetime.now().isoformat(),
|
557 |
+
'id': str(uuid.uuid4())
|
558 |
+
}
|
559 |
+
|
560 |
+
self.scraped_items = []
|
561 |
+
self.processed_items = []
|
562 |
+
self.annotation_state = {}
|
563 |
+
|
564 |
+
logger.info(f"📋 New project: {project_name}")
|
565 |
+
return self.current_project
|
566 |
|
567 |
+
def scrape_urls(self, urls: List[str], progress_callback=None) -> Tuple[int, List[str]]:
|
568 |
+
"""Scrape URLs"""
|
569 |
+
url_list = [url.strip() for url in urls if url.strip()]
|
570 |
+
|
571 |
+
if not url_list:
|
572 |
+
return 0, ["No valid URLs provided"]
|
573 |
+
|
574 |
+
logger.info(f"🕷️ Scraping {len(url_list)} URLs")
|
575 |
+
self.scraped_items = self.scraper.batch_scrape(url_list, progress_callback)
|
576 |
+
|
577 |
+
success = len(self.scraped_items)
|
578 |
+
failed = len(url_list) - success
|
579 |
+
|
580 |
+
errors = []
|
581 |
+
if failed > 0:
|
582 |
+
errors.append(f"{failed} URLs failed")
|
583 |
+
|
584 |
+
logger.info(f"✅ Scraped {success}, failed {failed}")
|
585 |
+
return success, errors
|
586 |
|
587 |
+
def process_data(self, options: Dict[str, bool]) -> int:
|
588 |
+
"""Process scraped data"""
|
589 |
+
if not self.scraped_items:
|
590 |
+
return 0
|
591 |
+
|
592 |
+
logger.info(f"⚙️ Processing {len(self.scraped_items)} items")
|
593 |
+
self.processed_items = self.processor.process_items(self.scraped_items, options)
|
594 |
+
|
595 |
+
logger.info(f"✅ Processed {len(self.processed_items)} items")
|
596 |
+
return len(self.processed_items)
|
597 |
|
598 |
+
def get_data_preview(self, num_items: int = 5) -> List[Dict[str, Any]]:
|
599 |
+
"""Get data preview"""
|
600 |
+
items = self.processed_items or self.scraped_items
|
601 |
+
|
602 |
+
preview = []
|
603 |
+
for item in items[:num_items]:
|
604 |
+
preview.append({
|
605 |
+
'title': item.title,
|
606 |
+
'content_preview': item.content[:200] + "..." if len(item.content) > 200 else item.content,
|
607 |
+
'word_count': item.word_count,
|
608 |
+
'quality_score': round(item.quality_score, 2),
|
609 |
+
'url': item.url
|
610 |
+
})
|
611 |
+
|
612 |
+
return preview
|
613 |
|
614 |
+
def get_data_statistics(self) -> Dict[str, Any]:
|
615 |
+
"""Get dataset statistics"""
|
616 |
+
items = self.processed_items or self.scraped_items
|
617 |
+
|
618 |
+
if not items:
|
619 |
+
return {}
|
620 |
+
|
621 |
+
word_counts = [item.word_count for item in items]
|
622 |
+
quality_scores = [item.quality_score for item in items]
|
623 |
+
|
624 |
+
return {
|
625 |
+
'total_items': len(items),
|
626 |
+
'avg_word_count': round(np.mean(word_counts)),
|
627 |
+
'avg_quality_score': round(np.mean(quality_scores), 2),
|
628 |
+
'word_count_range': [min(word_counts), max(word_counts)],
|
629 |
+
'quality_range': [round(min(quality_scores), 2), round(max(quality_scores), 2)],
|
630 |
+
'languages': list(set(item.language for item in items)),
|
631 |
+
'domains': list(set(urlparse(item.url).netloc for item in items))
|
632 |
+
}
|
633 |
|
634 |
+
def export_dataset(self, template_name: str, export_format: str, annotations: Dict[str, Any] = None) -> str:
|
635 |
+
"""Export dataset"""
|
636 |
+
if not self.processed_items and not self.scraped_items:
|
637 |
+
raise ValueError("No data to export")
|
638 |
+
|
639 |
+
items = self.processed_items or self.scraped_items
|
640 |
+
template = self.annotator.templates.get(template_name)
|
641 |
+
|
642 |
+
if not template:
|
643 |
+
raise ValueError(f"Unknown template: {template_name}")
|
644 |
+
|
645 |
+
logger.info(f"📤 Exporting {len(items)} items")
|
646 |
+
return self.exporter.export_dataset(items, template, export_format, annotations)
|
647 |
+
|
648 |
+
def create_modern_interface():
|
649 |
+
"""Create the modern Gradio interface"""
|
650 |
|
651 |
+
# Initialize studio
|
652 |
+
studio = DatasetStudio()
|
|
|
|
|
|
|
|
|
|
|
|
|
653 |
|
654 |
+
# Custom CSS
|
655 |
+
css = """
|
656 |
+
.gradio-container { max-width: 1400px; margin: auto; }
|
657 |
+
.studio-header {
|
658 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
659 |
+
color: white; padding: 2rem; border-radius: 15px;
|
660 |
+
margin-bottom: 2rem; text-align: center;
|
661 |
}
|
662 |
+
.workflow-card {
|
663 |
+
background: #f8f9ff; border: 2px solid #e1e5ff;
|
664 |
+
border-radius: 12px; padding: 1.5rem; margin: 1rem 0;
|
|
|
|
|
|
|
|
|
|
|
665 |
}
|
666 |
+
.step-header {
|
667 |
+
font-size: 1.2em; font-weight: 600; color: #4c51bf;
|
668 |
+
margin-bottom: 1rem;
|
|
|
|
|
|
|
|
|
|
|
669 |
}
|
670 |
"""
|
671 |
|
|
|
672 |
project_state = gr.State({})
|
673 |
|
674 |
+
with gr.Blocks(css=css, title="AI Dataset Studio", theme=gr.themes.Soft()) as interface:
|
675 |
|
676 |
# Header
|
677 |
gr.HTML("""
|
678 |
<div class="studio-header">
|
679 |
<h1>🚀 AI Dataset Studio</h1>
|
680 |
+
<p>Create high-quality training datasets without coding</p>
|
|
|
681 |
</div>
|
682 |
""")
|
683 |
|
|
|
684 |
with gr.Tabs() as main_tabs:
|
685 |
|
686 |
+
# Project Setup
|
687 |
+
with gr.Tab("🎯 Project Setup"):
|
688 |
+
gr.HTML('<div class="step-header">Step 1: Create Your Project</div>')
|
689 |
|
690 |
with gr.Row():
|
691 |
with gr.Column(scale=2):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
692 |
project_name = gr.Textbox(
|
693 |
label="Project Name",
|
694 |
+
placeholder="My Dataset Project",
|
695 |
+
value="News Analysis Dataset"
|
696 |
)
|
697 |
|
|
|
|
|
|
|
698 |
template_choice = gr.Radio(
|
699 |
choices=[
|
700 |
("📊 Text Classification", "text_classification"),
|
|
|
704 |
("📝 Text Summarization", "summarization")
|
705 |
],
|
706 |
label="Dataset Type",
|
707 |
+
value="text_classification"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
708 |
)
|
709 |
|
710 |
+
create_project_btn = gr.Button("🚀 Create Project", variant="primary")
|
711 |
project_status = gr.Markdown("")
|
712 |
|
713 |
with gr.Column(scale=1):
|
714 |
gr.HTML("""
|
715 |
<div class="workflow-card">
|
716 |
<h3>💡 Template Guide</h3>
|
717 |
+
<p><strong>Text Classification:</strong> Categorize content</p>
|
718 |
+
<p><strong>Sentiment Analysis:</strong> Analyze emotions</p>
|
719 |
+
<p><strong>Named Entity Recognition:</strong> Identify entities</p>
|
720 |
+
<p><strong>Question Answering:</strong> Create Q&A pairs</p>
|
721 |
+
<p><strong>Summarization:</strong> Generate summaries</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
722 |
</div>
|
723 |
""")
|
724 |
|
725 |
+
# Data Collection
|
726 |
+
with gr.Tab("🕷️ Data Collection"):
|
727 |
+
gr.HTML('<div class="step-header">Step 2: Collect Your Data</div>')
|
728 |
|
729 |
with gr.Row():
|
730 |
with gr.Column(scale=2):
|
731 |
+
urls_input = gr.Textbox(
|
732 |
+
label="URLs to Scrape (one per line)",
|
733 |
+
placeholder="https://example.com/article1\nhttps://example.com/article2",
|
734 |
+
lines=8
|
735 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
736 |
|
737 |
+
scrape_btn = gr.Button("🚀 Start Scraping", variant="primary")
|
|
|
738 |
scraping_status = gr.Markdown("")
|
739 |
|
740 |
with gr.Column(scale=1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
741 |
collection_stats = gr.HTML("")
|
742 |
|
743 |
+
# Data Processing
|
744 |
+
with gr.Tab("⚙️ Data Processing"):
|
745 |
+
gr.HTML('<div class="step-header">Step 3: Clean & Enhance</div>')
|
746 |
|
747 |
with gr.Row():
|
748 |
with gr.Column(scale=2):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
749 |
with gr.Row():
|
750 |
with gr.Column():
|
751 |
+
clean_text = gr.Checkbox(label="🧹 Text Cleaning", value=True)
|
752 |
+
quality_filter = gr.Checkbox(label="🎯 Quality Filter", value=True)
|
753 |
detect_language = gr.Checkbox(label="🌍 Language Detection", value=True)
|
754 |
|
755 |
with gr.Column():
|
756 |
add_sentiment = gr.Checkbox(label="😊 Sentiment Analysis", value=False)
|
757 |
extract_entities = gr.Checkbox(label="👥 Entity Extraction", value=False)
|
|
|
758 |
|
759 |
+
process_btn = gr.Button("⚙️ Process Data", variant="primary")
|
760 |
processing_status = gr.Markdown("")
|
761 |
|
762 |
with gr.Column(scale=1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
763 |
processing_stats = gr.HTML("")
|
764 |
|
765 |
+
# Data Preview
|
766 |
+
with gr.Tab("👀 Data Preview"):
|
767 |
+
gr.HTML('<div class="step-header">Step 4: Review Dataset</div>')
|
768 |
|
769 |
with gr.Row():
|
770 |
with gr.Column(scale=2):
|
771 |
+
refresh_btn = gr.Button("🔄 Refresh Preview", variant="secondary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
772 |
|
|
|
773 |
data_preview = gr.DataFrame(
|
774 |
+
headers=["Title", "Content Preview", "Words", "Quality", "URL"],
|
775 |
+
label="Dataset Preview"
|
|
|
776 |
)
|
777 |
|
778 |
with gr.Column(scale=1):
|
|
|
|
|
|
|
|
|
|
|
|
|
779 |
dataset_stats = gr.JSON(label="Statistics")
|
780 |
|
781 |
+
# Export
|
782 |
+
with gr.Tab("📤 Export Dataset"):
|
783 |
+
gr.HTML('<div class="step-header">Step 5: Export Your Dataset</div>')
|
784 |
|
785 |
with gr.Row():
|
786 |
with gr.Column(scale=2):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
787 |
export_format = gr.Radio(
|
788 |
choices=[
|
|
|
789 |
("📄 JSON", "json"),
|
790 |
("📊 CSV", "csv"),
|
791 |
("📋 JSONL", "jsonl"),
|
792 |
+
("🤗 HuggingFace", "huggingface_datasets")
|
793 |
],
|
794 |
label="Export Format",
|
795 |
value="json"
|
796 |
)
|
797 |
|
|
|
798 |
export_template = gr.Dropdown(
|
799 |
choices=[
|
800 |
"text_classification",
|
|
|
803 |
"question_answering",
|
804 |
"summarization"
|
805 |
],
|
806 |
+
label="Template",
|
807 |
value="text_classification"
|
808 |
)
|
809 |
|
810 |
+
export_btn = gr.Button("📤 Export Dataset", variant="primary")
|
|
|
|
|
811 |
export_status = gr.Markdown("")
|
812 |
+
export_file = gr.File(label="Download", visible=False)
|
813 |
|
814 |
with gr.Column(scale=1):
|
815 |
gr.HTML("""
|
816 |
<div class="workflow-card">
|
817 |
+
<h3>📋 Export Info</h3>
|
818 |
+
<p><strong>JSON:</strong> Universal format</p>
|
819 |
+
<p><strong>CSV:</strong> Excel compatible</p>
|
820 |
+
<p><strong>JSONL:</strong> Line-separated</p>
|
821 |
+
<p><strong>HuggingFace:</strong> ML ready</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
822 |
</div>
|
823 |
""")
|
824 |
|
825 |
# Event handlers
|
826 |
def create_project(name, template):
|
|
|
827 |
if not name.strip():
|
828 |
return "❌ Please enter a project name", {}
|
829 |
|
830 |
project = studio.start_new_project(name.strip(), template)
|
831 |
status = f"""
|
832 |
+
✅ **Project Created!**
|
833 |
|
834 |
+
**Name:** {project['name']}
|
835 |
**Type:** {template.replace('_', ' ').title()}
|
836 |
+
**ID:** {project['id'][:8]}...
|
|
|
837 |
|
838 |
+
👉 Next: Go to Data Collection tab
|
839 |
"""
|
840 |
return status, project
|
841 |
|
842 |
+
def scrape_urls_handler(urls_text, project, progress=gr.Progress()):
|
|
|
843 |
if not project:
|
844 |
+
return "❌ Create a project first", ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
845 |
|
846 |
+
urls = [url.strip() for url in urls_text.split('\n') if url.strip()]
|
847 |
if not urls:
|
848 |
return "❌ No URLs provided", ""
|
849 |
|
|
|
850 |
def progress_callback(pct, msg):
|
851 |
progress(pct, desc=msg)
|
852 |
|
853 |
+
success, errors = studio.scrape_urls(urls, progress_callback)
|
|
|
854 |
|
855 |
+
if success > 0:
|
856 |
+
stats = f"""
|
857 |
+
<div style="background: #e8f5e8; padding: 1rem; border-radius: 8px;">
|
858 |
<h3>✅ Scraping Complete</h3>
|
859 |
+
<p><strong>{success}</strong> items collected</p>
|
|
|
860 |
</div>
|
861 |
"""
|
862 |
|
863 |
status = f"""
|
864 |
✅ **Scraping Complete!**
|
865 |
|
866 |
+
**Success:** {success} URLs
|
867 |
+
**Failed:** {len(urls) - success} URLs
|
868 |
|
869 |
+
👉 Next: Go to Data Processing tab
|
870 |
"""
|
871 |
|
872 |
+
return status, stats
|
873 |
else:
|
874 |
return f"❌ Scraping failed: {', '.join(errors)}", ""
|
875 |
|
876 |
+
def process_data_handler(clean, quality, language, sentiment, entities, project):
|
|
|
|
|
877 |
if not project:
|
878 |
+
return "❌ Create a project first", ""
|
879 |
|
880 |
if not studio.scraped_items:
|
881 |
+
return "❌ No data to process. Scrape URLs first.", ""
|
882 |
|
|
|
883 |
options = {
|
884 |
+
'clean_text': clean,
|
885 |
+
'quality_filter': quality,
|
886 |
+
'detect_language': language,
|
887 |
+
'add_sentiment': sentiment,
|
888 |
+
'extract_entities': entities
|
|
|
889 |
}
|
890 |
|
891 |
+
processed = studio.process_data(options)
|
|
|
892 |
|
893 |
+
if processed > 0:
|
894 |
stats = studio.get_data_statistics()
|
895 |
stats_html = f"""
|
896 |
+
<div style="background: #e8f5e8; padding: 1rem; border-radius: 8px;">
|
897 |
<h3>⚙️ Processing Complete</h3>
|
898 |
+
<p><strong>{processed}</strong> items processed</p>
|
899 |
+
<p>Quality: <strong>{stats.get('avg_quality_score', 0)}</strong></p>
|
|
|
900 |
</div>
|
901 |
"""
|
902 |
|
903 |
status = f"""
|
904 |
✅ **Processing Complete!**
|
905 |
|
906 |
+
**Processed:** {processed} items
|
907 |
+
**Avg Quality:** {stats.get('avg_quality_score', 0)}
|
|
|
908 |
|
909 |
+
👉 Next: Check Data Preview tab
|
910 |
"""
|
911 |
|
912 |
return status, stats_html
|
913 |
else:
|
914 |
+
return "❌ No items passed filters", ""
|
915 |
|
916 |
def refresh_preview_handler(project):
|
|
|
917 |
if not project:
|
918 |
return None, {}
|
919 |
|
920 |
+
preview = studio.get_data_preview()
|
921 |
stats = studio.get_data_statistics()
|
922 |
|
923 |
+
if preview:
|
|
|
924 |
df_data = []
|
925 |
+
for item in preview:
|
926 |
df_data.append([
|
927 |
item['title'][:50] + "..." if len(item['title']) > 50 else item['title'],
|
928 |
item['content_preview'],
|
|
|
935 |
|
936 |
return None, {}
|
937 |
|
938 |
+
def export_handler(format_type, template, project):
|
|
|
939 |
if not project:
|
940 |
+
return "❌ Create a project first", None
|
941 |
|
942 |
if not studio.processed_items and not studio.scraped_items:
|
943 |
+
return "❌ No data to export", None
|
944 |
|
945 |
try:
|
946 |
+
filename = studio.export_dataset(template, format_type)
|
|
|
947 |
|
948 |
status = f"""
|
949 |
✅ **Export Successful!**
|
950 |
|
951 |
+
**Format:** {format_type}
|
|
|
952 |
**File:** {filename}
|
953 |
|
954 |
+
📥 Download link below
|
955 |
"""
|
956 |
|
957 |
return status, filename
|
|
|
959 |
except Exception as e:
|
960 |
return f"❌ Export failed: {str(e)}", None
|
961 |
|
962 |
+
# Connect events
|
963 |
create_project_btn.click(
|
964 |
fn=create_project,
|
965 |
inputs=[project_name, template_choice],
|
|
|
968 |
|
969 |
scrape_btn.click(
|
970 |
fn=scrape_urls_handler,
|
971 |
+
inputs=[urls_input, project_state],
|
972 |
outputs=[scraping_status, collection_stats]
|
973 |
)
|
974 |
|
975 |
process_btn.click(
|
976 |
fn=process_data_handler,
|
977 |
inputs=[clean_text, quality_filter, detect_language,
|
978 |
+
add_sentiment, extract_entities, project_state],
|
979 |
outputs=[processing_status, processing_stats]
|
980 |
)
|
981 |
|
982 |
+
refresh_btn.click(
|
983 |
fn=refresh_preview_handler,
|
984 |
inputs=[project_state],
|
985 |
outputs=[data_preview, dataset_stats]
|
986 |
)
|
987 |
|
988 |
export_btn.click(
|
989 |
+
fn=export_handler,
|
990 |
inputs=[export_format, export_template, project_state],
|
991 |
outputs=[export_status, export_file]
|
992 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
993 |
|
994 |
return interface
|
995 |
|
996 |
+
# Launch application
|
997 |
if __name__ == "__main__":
|
998 |
logger.info("🚀 Starting AI Dataset Studio...")
|
999 |
|
1000 |
+
# Check features
|
1001 |
features = []
|
1002 |
if HAS_TRANSFORMERS:
|
1003 |
features.append("✅ AI Models")
|
|
|
1012 |
if HAS_DATASETS:
|
1013 |
features.append("✅ HuggingFace Integration")
|
1014 |
else:
|
1015 |
+
features.append("⚠️ Standard Export")
|
1016 |
|
1017 |
logger.info(f"📊 Features: {' | '.join(features)}")
|
1018 |
|
1019 |
try:
|
1020 |
+
# Test DatasetStudio
|
1021 |
+
test_studio = DatasetStudio()
|
1022 |
+
logger.info("✅ DatasetStudio test passed")
|
1023 |
+
|
1024 |
interface = create_modern_interface()
|
1025 |
logger.info("✅ Interface created successfully")
|
1026 |
|
|
|
1028 |
server_name="0.0.0.0",
|
1029 |
server_port=7860,
|
1030 |
share=False,
|
1031 |
+
show_error=True
|
|
|
1032 |
)
|
1033 |
|
1034 |
except Exception as e:
|
1035 |
+
logger.error(f"❌ Failed to launch: {e}")
|
1036 |
+
logger.error("💡 Try: python app_minimal.py")
|
1037 |
raise
|