Update app.py
Browse files
app.py
CHANGED
@@ -1,149 +1,146 @@
|
|
1 |
"""
|
2 |
-
AI-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
"""
|
5 |
|
6 |
import gradio as gr
|
7 |
-
import requests
|
8 |
-
from bs4 import BeautifulSoup
|
9 |
-
from urllib.parse import urljoin, urlparse
|
10 |
import pandas as pd
|
11 |
-
|
12 |
import json
|
13 |
import re
|
14 |
-
import
|
15 |
-
from
|
|
|
|
|
16 |
import logging
|
|
|
|
|
17 |
from pathlib import Path
|
18 |
-
import
|
19 |
-
from dataclasses import dataclass
|
20 |
-
from transformers import pipeline
|
21 |
-
import nltk
|
22 |
-
from nltk.tokenize import sent_tokenize
|
23 |
-
import asyncio
|
24 |
-
import aiohttp
|
25 |
-
from concurrent.futures import ThreadPoolExecutor
|
26 |
import hashlib
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
# Download required NLTK data
|
29 |
try:
|
30 |
-
nltk
|
31 |
-
|
32 |
-
nltk.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
# Configure logging
|
35 |
-
logging.basicConfig(level=logging.INFO)
|
36 |
logger = logging.getLogger(__name__)
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
@dataclass
|
39 |
-
class
|
40 |
-
"""Data class for scraped content
|
|
|
41 |
url: str
|
42 |
title: str
|
43 |
content: str
|
44 |
-
|
|
|
45 |
word_count: int
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
meta_description: Optional[str] = None
|
51 |
-
keywords: List[str] = None
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
'localhost', '127.0.0.1', '0.0.0.0',
|
59 |
-
'192.168.', '10.', '172.16.', '172.17.',
|
60 |
-
'172.18.', '172.19.', '172.20.', '172.21.',
|
61 |
-
'172.22.', '172.23.', '172.24.', '172.25.',
|
62 |
-
'172.26.', '172.27.', '172.28.', '172.29.',
|
63 |
-
'172.30.', '172.31.'
|
64 |
-
}
|
65 |
-
|
66 |
-
@classmethod
|
67 |
-
def validate_url(cls, url: str) -> Tuple[bool, str]:
|
68 |
-
"""Validate URL for security concerns"""
|
69 |
-
try:
|
70 |
-
parsed = urlparse(url)
|
71 |
-
|
72 |
-
# Check scheme
|
73 |
-
if parsed.scheme not in cls.ALLOWED_SCHEMES:
|
74 |
-
return False, f"Invalid scheme: {parsed.scheme}. Only HTTP/HTTPS allowed."
|
75 |
-
|
76 |
-
# Check for blocked domains
|
77 |
-
hostname = parsed.hostname or ''
|
78 |
-
if any(blocked in hostname for blocked in cls.BLOCKED_DOMAINS):
|
79 |
-
return False, "Access to internal/local networks is not allowed."
|
80 |
-
|
81 |
-
# Basic malformed URL check
|
82 |
-
if not parsed.netloc:
|
83 |
-
return False, "Invalid URL format."
|
84 |
-
|
85 |
-
return True, "URL is valid."
|
86 |
-
|
87 |
-
except Exception as e:
|
88 |
-
return False, f"URL validation error: {str(e)}"
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
response = requests.get(robots_url, timeout=5)
|
101 |
-
if response.status_code == 200:
|
102 |
-
# Simple robots.txt parsing (basic implementation)
|
103 |
-
lines = response.text.split('\n')
|
104 |
-
user_agent_section = False
|
105 |
-
|
106 |
-
for line in lines:
|
107 |
-
line = line.strip()
|
108 |
-
if line.startswith('User-agent:'):
|
109 |
-
agent = line.split(':', 1)[1].strip()
|
110 |
-
user_agent_section = agent == '*' or agent.lower() == user_agent.lower()
|
111 |
-
elif user_agent_section and line.startswith('Disallow:'):
|
112 |
-
disallowed = line.split(':', 1)[1].strip()
|
113 |
-
if disallowed and url.endswith(disallowed):
|
114 |
-
return False
|
115 |
-
|
116 |
-
return True
|
117 |
-
|
118 |
-
except Exception:
|
119 |
-
# If robots.txt can't be fetched, assume allowed
|
120 |
-
return True
|
121 |
|
122 |
-
class
|
123 |
-
"""Advanced
|
124 |
|
125 |
def __init__(self):
|
126 |
self.session = requests.Session()
|
127 |
self.session.headers.update({
|
128 |
-
'User-Agent': 'Mozilla/5.0 (compatible; AI-
|
129 |
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
|
130 |
'Accept-Language': 'en-US,en;q=0.5',
|
131 |
'Accept-Encoding': 'gzip, deflate',
|
132 |
'Connection': 'keep-alive',
|
133 |
-
'Upgrade-Insecure-Requests': '1',
|
134 |
})
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
-
def
|
137 |
-
"""
|
|
|
|
|
|
|
|
|
138 |
try:
|
139 |
-
#
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
# Fetch content
|
149 |
response = self.session.get(url, timeout=15)
|
@@ -152,125 +149,82 @@ class ContentExtractor:
|
|
152 |
# Parse HTML
|
153 |
soup = BeautifulSoup(response.content, 'html.parser')
|
154 |
|
155 |
-
# Extract
|
156 |
title = self._extract_title(soup)
|
157 |
-
|
158 |
-
|
159 |
-
meta_description = self._extract_meta_description(soup)
|
160 |
-
|
161 |
-
# Extract main content
|
162 |
-
content = self._extract_main_content(soup)
|
163 |
-
|
164 |
-
if not content or len(content.strip()) < 100:
|
165 |
-
raise ValueError("Insufficient content extracted")
|
166 |
|
167 |
-
#
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
# Extract keywords
|
172 |
-
keywords = self._extract_keywords(content)
|
173 |
-
|
174 |
-
return ScrapedContent(
|
175 |
url=url,
|
176 |
title=title,
|
177 |
content=content,
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
author=author,
|
183 |
-
publish_date=publish_date,
|
184 |
-
meta_description=meta_description,
|
185 |
-
keywords=keywords
|
186 |
)
|
187 |
|
|
|
|
|
188 |
except Exception as e:
|
189 |
-
logger.error(f"
|
190 |
-
|
191 |
|
192 |
-
def
|
193 |
-
"""
|
194 |
-
|
195 |
-
|
196 |
-
if og_title and og_title.get('content'):
|
197 |
-
return og_title['content'].strip()
|
198 |
-
|
199 |
-
# Try regular title tag
|
200 |
-
title_tag = soup.find('title')
|
201 |
-
if title_tag:
|
202 |
-
return title_tag.get_text().strip()
|
203 |
-
|
204 |
-
# Try h1 as fallback
|
205 |
-
h1_tag = soup.find('h1')
|
206 |
-
if h1_tag:
|
207 |
-
return h1_tag.get_text().strip()
|
208 |
-
|
209 |
-
return "No title found"
|
210 |
-
|
211 |
-
def _extract_author(self, soup: BeautifulSoup) -> Optional[str]:
|
212 |
-
"""Extract author information"""
|
213 |
-
# Try multiple selectors for author
|
214 |
-
author_selectors = [
|
215 |
-
'meta[name="author"]',
|
216 |
-
'meta[property="article:author"]',
|
217 |
-
'.author',
|
218 |
-
'.byline',
|
219 |
-
'[rel="author"]'
|
220 |
-
]
|
221 |
|
222 |
-
for
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
|
|
|
|
|
|
229 |
|
230 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
-
def
|
233 |
-
"""Extract
|
234 |
-
|
235 |
-
|
236 |
-
'meta[
|
237 |
-
'
|
238 |
-
'
|
239 |
-
'
|
240 |
]
|
241 |
|
242 |
-
for selector in
|
243 |
element = soup.select_one(selector)
|
244 |
if element:
|
245 |
if element.name == 'meta':
|
246 |
return element.get('content', '').strip()
|
247 |
-
elif element.name == 'time':
|
248 |
-
return element.get('datetime', '').strip()
|
249 |
else:
|
250 |
return element.get_text().strip()
|
251 |
|
252 |
-
return
|
253 |
-
|
254 |
-
def _extract_meta_description(self, soup: BeautifulSoup) -> Optional[str]:
|
255 |
-
"""Extract meta description"""
|
256 |
-
meta_desc = soup.find('meta', attrs={'name': 'description'})
|
257 |
-
if meta_desc:
|
258 |
-
return meta_desc.get('content', '').strip()
|
259 |
-
|
260 |
-
og_desc = soup.find('meta', property='og:description')
|
261 |
-
if og_desc:
|
262 |
-
return og_desc.get('content', '').strip()
|
263 |
-
|
264 |
-
return None
|
265 |
|
266 |
-
def
|
267 |
-
"""Extract main content
|
268 |
# Remove unwanted elements
|
269 |
-
for element in soup(['script', 'style', 'nav', 'header', 'footer',
|
270 |
-
'aside', 'advertisement', '.ads', '.sidebar']):
|
271 |
element.decompose()
|
272 |
|
273 |
-
# Try content-specific selectors
|
274 |
content_selectors = [
|
275 |
'article',
|
276 |
'main',
|
@@ -278,424 +232,1155 @@ class ContentExtractor:
|
|
278 |
'.post-content',
|
279 |
'.entry-content',
|
280 |
'.article-body',
|
281 |
-
'
|
282 |
-
'.story-body'
|
283 |
]
|
284 |
|
285 |
for selector in content_selectors:
|
286 |
element = soup.select_one(selector)
|
287 |
if element:
|
288 |
text = element.get_text(separator=' ', strip=True)
|
289 |
-
if len(text) > 200:
|
290 |
return self._clean_text(text)
|
291 |
|
292 |
-
# Fallback
|
293 |
body = soup.find('body')
|
294 |
if body:
|
295 |
-
|
296 |
-
return self._clean_text(text)
|
297 |
|
298 |
-
# Last resort: all text
|
299 |
return self._clean_text(soup.get_text(separator=' ', strip=True))
|
300 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
def _clean_text(self, text: str) -> str:
|
302 |
"""Clean extracted text"""
|
303 |
# Remove extra whitespace
|
304 |
text = re.sub(r'\s+', ' ', text)
|
305 |
|
306 |
-
# Remove common
|
307 |
-
|
308 |
-
|
309 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
|
311 |
return text.strip()
|
312 |
|
313 |
-
def
|
314 |
-
"""
|
315 |
-
|
316 |
-
|
317 |
-
|
|
|
318 |
|
319 |
-
|
320 |
-
|
321 |
-
|
|
|
|
|
|
|
322 |
|
323 |
-
#
|
324 |
-
|
325 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
|
327 |
-
class
|
328 |
-
"""
|
329 |
|
330 |
def __init__(self):
|
331 |
-
self.
|
332 |
-
self.
|
|
|
|
|
333 |
|
334 |
-
def
|
335 |
-
"""Load
|
|
|
|
|
|
|
336 |
try:
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
)
|
342 |
-
|
|
|
343 |
except Exception as e:
|
344 |
-
logger.
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
model="sshleifer/distilbart-cnn-12-6"
|
350 |
-
)
|
351 |
-
logger.info("Fallback summarization model loaded")
|
352 |
-
except Exception as e2:
|
353 |
-
logger.error(f"Failed to load fallback model: {e2}")
|
354 |
-
self.summarizer = None
|
355 |
-
|
356 |
-
def summarize(self, content: str, max_length: int = 300) -> str:
|
357 |
-
"""Generate AI summary of content"""
|
358 |
-
if not self.summarizer:
|
359 |
-
return self._extractive_summary(content)
|
360 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
361 |
try:
|
362 |
-
#
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
combined,
|
386 |
-
max_length=max_length,
|
387 |
-
min_length=50,
|
388 |
-
do_sample=False
|
389 |
-
)
|
390 |
-
return result[0]['summary_text']
|
391 |
-
|
392 |
-
return combined
|
393 |
|
394 |
except Exception as e:
|
395 |
-
logger.error(f"
|
396 |
-
return
|
397 |
-
|
398 |
-
def
|
399 |
-
"""
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
current_chunk.append(sentence)
|
413 |
-
current_length += sentence_length
|
414 |
|
415 |
-
|
416 |
-
|
|
|
417 |
|
418 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
419 |
|
420 |
-
def
|
421 |
-
"""
|
422 |
-
|
423 |
-
|
424 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
425 |
|
426 |
-
#
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
|
|
|
|
|
|
|
|
432 |
|
433 |
-
return
|
|
|
|
|
|
|
|
|
|
|
434 |
|
435 |
-
class
|
436 |
-
"""
|
437 |
|
438 |
def __init__(self):
|
439 |
-
self.
|
440 |
-
|
441 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
442 |
|
443 |
-
def
|
444 |
-
|
|
|
445 |
try:
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
# Add protocol if missing
|
450 |
-
if not url.startswith(('http://', 'https://')):
|
451 |
-
url = 'https://' + url
|
452 |
-
|
453 |
-
# Extract content
|
454 |
-
with gr.update(): # Show progress
|
455 |
-
scraped_content = self.extractor.extract_content(url)
|
456 |
-
|
457 |
-
# Generate summary
|
458 |
-
summary = self.summarizer.summarize(scraped_content.content, summary_length)
|
459 |
-
scraped_content.summary = summary
|
460 |
-
|
461 |
-
# Store result
|
462 |
-
self.scraped_data.append(scraped_content)
|
463 |
-
|
464 |
-
# Format results
|
465 |
-
metadata = f"""
|
466 |
-
**📊 Content Analysis**
|
467 |
-
- **Title:** {scraped_content.title}
|
468 |
-
- **Author:** {scraped_content.author or 'Not found'}
|
469 |
-
- **Published:** {scraped_content.publish_date or 'Not found'}
|
470 |
-
- **Word Count:** {scraped_content.word_count:,}
|
471 |
-
- **Reading Time:** {scraped_content.reading_time} minutes
|
472 |
-
- **Extracted:** {scraped_content.extracted_at}
|
473 |
-
"""
|
474 |
|
475 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
476 |
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
keywords_text
|
482 |
-
)
|
483 |
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
488 |
|
489 |
-
def
|
490 |
-
"""Export
|
491 |
-
if not
|
492 |
-
|
493 |
|
494 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
495 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
|
496 |
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
'Word Count': item.word_count,
|
506 |
-
'Reading Time': item.reading_time,
|
507 |
-
'Summary': item.summary,
|
508 |
-
'Keywords': ', '.join(item.keywords) if item.keywords else '',
|
509 |
-
'Extracted At': item.extracted_at
|
510 |
-
}
|
511 |
-
for item in self.scraped_data
|
512 |
-
])
|
513 |
-
df.to_csv(filename, index=False)
|
514 |
-
|
515 |
-
elif format_type == "JSON":
|
516 |
-
filename = f"scraped_data_{timestamp}.json"
|
517 |
-
data = [
|
518 |
-
{
|
519 |
-
'url': item.url,
|
520 |
-
'title': item.title,
|
521 |
-
'content': item.content,
|
522 |
-
'summary': item.summary,
|
523 |
-
'metadata': {
|
524 |
-
'author': item.author,
|
525 |
-
'publish_date': item.publish_date,
|
526 |
-
'word_count': item.word_count,
|
527 |
-
'reading_time': item.reading_time,
|
528 |
-
'keywords': item.keywords,
|
529 |
-
'extracted_at': item.extracted_at
|
530 |
-
}
|
531 |
-
}
|
532 |
-
for item in self.scraped_data
|
533 |
-
]
|
534 |
-
with open(filename, 'w', encoding='utf-8') as f:
|
535 |
-
json.dump(data, f, indent=2, ensure_ascii=False)
|
536 |
-
|
537 |
-
return filename
|
538 |
|
539 |
except Exception as e:
|
540 |
-
logger.error(f"
|
541 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
542 |
|
543 |
-
def
|
544 |
-
"""
|
545 |
-
|
546 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
547 |
|
548 |
-
def
|
549 |
-
"""Create
|
550 |
-
app = WebScraperApp()
|
551 |
|
552 |
-
#
|
|
|
|
|
|
|
553 |
custom_css = """
|
554 |
.gradio-container {
|
555 |
-
max-width:
|
556 |
margin: auto;
|
|
|
557 |
}
|
558 |
-
|
559 |
-
|
560 |
-
background: linear-gradient(
|
561 |
color: white;
|
562 |
padding: 2rem;
|
563 |
-
border-radius:
|
564 |
margin-bottom: 2rem;
|
|
|
|
|
565 |
}
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
border
|
|
|
570 |
padding: 1.5rem;
|
571 |
margin: 1rem 0;
|
|
|
572 |
}
|
573 |
-
|
574 |
-
|
575 |
-
|
|
|
576 |
}
|
577 |
-
|
578 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
579 |
font-weight: bold;
|
580 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
581 |
"""
|
582 |
|
583 |
-
|
|
|
|
|
|
|
584 |
|
585 |
# Header
|
586 |
gr.HTML("""
|
587 |
-
<div class="
|
588 |
-
<h1
|
589 |
-
<p>
|
|
|
590 |
</div>
|
591 |
""")
|
592 |
|
593 |
-
# Main
|
594 |
-
with gr.
|
595 |
-
|
596 |
-
|
597 |
-
|
|
|
598 |
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
604 |
|
605 |
with gr.Row():
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
613 |
|
614 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
615 |
|
616 |
-
|
617 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
618 |
|
619 |
-
|
620 |
-
|
621 |
-
summary_output = gr.Markdown(label="AI Summary")
|
622 |
-
keywords_output = gr.Markdown(label="Keywords")
|
623 |
-
|
624 |
-
with gr.Column(scale=1):
|
625 |
-
# Export section
|
626 |
-
gr.HTML("<div class='feature-box'><h3>💾 Export Options</h3></div>")
|
627 |
|
628 |
-
|
629 |
-
|
630 |
-
label="Export Format",
|
631 |
-
value="CSV"
|
632 |
-
)
|
633 |
|
634 |
-
|
635 |
-
|
636 |
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
672 |
|
673 |
-
# Event handlers
|
674 |
scrape_btn.click(
|
675 |
-
fn=
|
676 |
-
inputs=[
|
677 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
678 |
)
|
679 |
|
680 |
export_btn.click(
|
681 |
-
fn=
|
682 |
-
inputs=[export_format],
|
683 |
-
outputs=[export_status]
|
684 |
)
|
685 |
|
686 |
-
|
687 |
-
|
688 |
-
|
|
|
|
|
689 |
)
|
690 |
|
691 |
return interface
|
692 |
|
693 |
# Launch the application
|
694 |
if __name__ == "__main__":
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
"""
|
2 |
+
AI Dataset Studio - Modern Web Scraping & Dataset Creation Platform
|
3 |
+
A mini Scale AI for non-coders and vibe coders
|
4 |
+
|
5 |
+
Features:
|
6 |
+
- Intelligent web scraping with content extraction
|
7 |
+
- Automated data cleaning and preprocessing
|
8 |
+
- Interactive annotation tools
|
9 |
+
- Template-based workflows for common ML tasks
|
10 |
+
- High-quality dataset generation
|
11 |
+
- Export to HuggingFace Hub and popular ML formats
|
12 |
+
- Visual data quality metrics
|
13 |
+
- No-code dataset creation workflows
|
14 |
"""
|
15 |
|
16 |
import gradio as gr
|
|
|
|
|
|
|
17 |
import pandas as pd
|
18 |
+
import numpy as np
|
19 |
import json
|
20 |
import re
|
21 |
+
import requests
|
22 |
+
from bs4 import BeautifulSoup
|
23 |
+
from urllib.parse import urlparse, urljoin
|
24 |
+
from datetime import datetime, timedelta
|
25 |
import logging
|
26 |
+
from typing import Dict, List, Tuple, Optional, Any
|
27 |
+
from dataclasses import dataclass, asdict
|
28 |
from pathlib import Path
|
29 |
+
import uuid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
import hashlib
|
31 |
+
import time
|
32 |
+
from collections import defaultdict
|
33 |
+
import io
|
34 |
+
import zipfile
|
35 |
+
|
36 |
+
# Optional imports with fallbacks
|
37 |
+
try:
|
38 |
+
from transformers import pipeline, AutoTokenizer, AutoModel
|
39 |
+
from sentence_transformers import SentenceTransformer
|
40 |
+
HAS_TRANSFORMERS = True
|
41 |
+
except ImportError:
|
42 |
+
HAS_TRANSFORMERS = False
|
43 |
|
|
|
44 |
try:
|
45 |
+
import nltk
|
46 |
+
from nltk.tokenize import sent_tokenize, word_tokenize
|
47 |
+
from nltk.corpus import stopwords
|
48 |
+
HAS_NLTK = True
|
49 |
+
except ImportError:
|
50 |
+
HAS_NLTK = False
|
51 |
+
|
52 |
+
try:
|
53 |
+
from datasets import Dataset, DatasetDict
|
54 |
+
HAS_DATASETS = True
|
55 |
+
except ImportError:
|
56 |
+
HAS_DATASETS = False
|
57 |
|
58 |
# Configure logging
|
59 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
60 |
logger = logging.getLogger(__name__)
|
61 |
|
62 |
+
# Download NLTK data if available
|
63 |
+
if HAS_NLTK:
|
64 |
+
try:
|
65 |
+
nltk.download('punkt', quiet=True)
|
66 |
+
nltk.download('stopwords', quiet=True)
|
67 |
+
nltk.download('averaged_perceptron_tagger', quiet=True)
|
68 |
+
except:
|
69 |
+
pass
|
70 |
+
|
71 |
@dataclass
|
72 |
+
class ScrapedItem:
|
73 |
+
"""Data class for scraped content"""
|
74 |
+
id: str
|
75 |
url: str
|
76 |
title: str
|
77 |
content: str
|
78 |
+
metadata: Dict[str, Any]
|
79 |
+
scraped_at: str
|
80 |
word_count: int
|
81 |
+
language: str = "en"
|
82 |
+
quality_score: float = 0.0
|
83 |
+
labels: List[str] = None
|
84 |
+
annotations: Dict[str, Any] = None
|
|
|
|
|
85 |
|
86 |
+
def __post_init__(self):
|
87 |
+
if self.labels is None:
|
88 |
+
self.labels = []
|
89 |
+
if self.annotations is None:
|
90 |
+
self.annotations = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
+
@dataclass
|
93 |
+
class DatasetTemplate:
|
94 |
+
"""Template for dataset creation"""
|
95 |
+
name: str
|
96 |
+
description: str
|
97 |
+
task_type: str # classification, ner, qa, summarization, etc.
|
98 |
+
required_fields: List[str]
|
99 |
+
optional_fields: List[str]
|
100 |
+
example_format: Dict[str, Any]
|
101 |
+
instructions: str
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
class WebScraperEngine:
|
104 |
+
"""Advanced web scraping engine with smart content extraction"""
|
105 |
|
106 |
def __init__(self):
|
107 |
self.session = requests.Session()
|
108 |
self.session.headers.update({
|
109 |
+
'User-Agent': 'Mozilla/5.0 (compatible; AI-DatasetStudio/1.0; Research)',
|
110 |
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
|
111 |
'Accept-Language': 'en-US,en;q=0.5',
|
112 |
'Accept-Encoding': 'gzip, deflate',
|
113 |
'Connection': 'keep-alive',
|
|
|
114 |
})
|
115 |
+
|
116 |
+
# Initialize AI models if available
|
117 |
+
self.content_classifier = None
|
118 |
+
self.quality_scorer = None
|
119 |
+
self._load_models()
|
120 |
|
121 |
+
def _load_models(self):
|
122 |
+
"""Load AI models for content analysis"""
|
123 |
+
if not HAS_TRANSFORMERS:
|
124 |
+
logger.warning("⚠️ Transformers not available, using rule-based methods")
|
125 |
+
return
|
126 |
+
|
127 |
try:
|
128 |
+
# Content quality assessment
|
129 |
+
self.quality_scorer = pipeline(
|
130 |
+
"text-classification",
|
131 |
+
model="martin-ha/toxic-comment-model",
|
132 |
+
return_all_scores=True
|
133 |
+
)
|
134 |
+
logger.info("✅ Quality assessment model loaded")
|
135 |
+
except Exception as e:
|
136 |
+
logger.warning(f"⚠️ Could not load quality model: {e}")
|
137 |
+
|
138 |
+
def scrape_url(self, url: str) -> Optional[ScrapedItem]:
|
139 |
+
"""Scrape a single URL and return structured data"""
|
140 |
+
try:
|
141 |
+
# Validate URL
|
142 |
+
if not self._is_valid_url(url):
|
143 |
+
raise ValueError("Invalid URL provided")
|
144 |
|
145 |
# Fetch content
|
146 |
response = self.session.get(url, timeout=15)
|
|
|
149 |
# Parse HTML
|
150 |
soup = BeautifulSoup(response.content, 'html.parser')
|
151 |
|
152 |
+
# Extract structured data
|
153 |
title = self._extract_title(soup)
|
154 |
+
content = self._extract_content(soup)
|
155 |
+
metadata = self._extract_metadata(soup, response)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
+
# Create scraped item
|
158 |
+
item = ScrapedItem(
|
159 |
+
id=str(uuid.uuid4()),
|
|
|
|
|
|
|
|
|
|
|
160 |
url=url,
|
161 |
title=title,
|
162 |
content=content,
|
163 |
+
metadata=metadata,
|
164 |
+
scraped_at=datetime.now().isoformat(),
|
165 |
+
word_count=len(content.split()),
|
166 |
+
quality_score=self._assess_quality(content)
|
|
|
|
|
|
|
|
|
167 |
)
|
168 |
|
169 |
+
return item
|
170 |
+
|
171 |
except Exception as e:
|
172 |
+
logger.error(f"Failed to scrape {url}: {e}")
|
173 |
+
return None
|
174 |
|
175 |
+
def batch_scrape(self, urls: List[str], progress_callback=None) -> List[ScrapedItem]:
|
176 |
+
"""Scrape multiple URLs with progress tracking"""
|
177 |
+
results = []
|
178 |
+
total = len(urls)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
+
for i, url in enumerate(urls):
|
181 |
+
if progress_callback:
|
182 |
+
progress_callback(i / total, f"Scraping {i+1}/{total}: {url[:50]}...")
|
183 |
+
|
184 |
+
item = self.scrape_url(url)
|
185 |
+
if item:
|
186 |
+
results.append(item)
|
187 |
+
|
188 |
+
# Rate limiting
|
189 |
+
time.sleep(1)
|
190 |
|
191 |
+
return results
|
192 |
+
|
193 |
+
def _is_valid_url(self, url: str) -> bool:
|
194 |
+
"""Validate URL format and safety"""
|
195 |
+
try:
|
196 |
+
parsed = urlparse(url)
|
197 |
+
return parsed.scheme in ['http', 'https'] and parsed.netloc
|
198 |
+
except:
|
199 |
+
return False
|
200 |
|
201 |
+
def _extract_title(self, soup: BeautifulSoup) -> str:
|
202 |
+
"""Extract page title"""
|
203 |
+
# Try multiple selectors
|
204 |
+
selectors = [
|
205 |
+
'meta[property="og:title"]',
|
206 |
+
'meta[name="twitter:title"]',
|
207 |
+
'title',
|
208 |
+
'h1'
|
209 |
]
|
210 |
|
211 |
+
for selector in selectors:
|
212 |
element = soup.select_one(selector)
|
213 |
if element:
|
214 |
if element.name == 'meta':
|
215 |
return element.get('content', '').strip()
|
|
|
|
|
216 |
else:
|
217 |
return element.get_text().strip()
|
218 |
|
219 |
+
return "Untitled"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
+
def _extract_content(self, soup: BeautifulSoup) -> str:
|
222 |
+
"""Extract main content using multiple strategies"""
|
223 |
# Remove unwanted elements
|
224 |
+
for element in soup(['script', 'style', 'nav', 'header', 'footer', 'aside']):
|
|
|
225 |
element.decompose()
|
226 |
|
227 |
+
# Try content-specific selectors
|
228 |
content_selectors = [
|
229 |
'article',
|
230 |
'main',
|
|
|
232 |
'.post-content',
|
233 |
'.entry-content',
|
234 |
'.article-body',
|
235 |
+
'[role="main"]'
|
|
|
236 |
]
|
237 |
|
238 |
for selector in content_selectors:
|
239 |
element = soup.select_one(selector)
|
240 |
if element:
|
241 |
text = element.get_text(separator=' ', strip=True)
|
242 |
+
if len(text) > 200:
|
243 |
return self._clean_text(text)
|
244 |
|
245 |
+
# Fallback to body
|
246 |
body = soup.find('body')
|
247 |
if body:
|
248 |
+
return self._clean_text(body.get_text(separator=' ', strip=True))
|
|
|
249 |
|
|
|
250 |
return self._clean_text(soup.get_text(separator=' ', strip=True))
|
251 |
|
252 |
+
def _extract_metadata(self, soup: BeautifulSoup, response) -> Dict[str, Any]:
|
253 |
+
"""Extract metadata from page"""
|
254 |
+
metadata = {
|
255 |
+
'domain': urlparse(response.url).netloc,
|
256 |
+
'status_code': response.status_code,
|
257 |
+
'content_type': response.headers.get('content-type', ''),
|
258 |
+
'extracted_at': datetime.now().isoformat()
|
259 |
+
}
|
260 |
+
|
261 |
+
# Extract meta tags
|
262 |
+
meta_tags = ['description', 'keywords', 'author', 'published_time']
|
263 |
+
for tag in meta_tags:
|
264 |
+
element = soup.find('meta', attrs={'name': tag}) or soup.find('meta', attrs={'property': f'article:{tag}'})
|
265 |
+
if element:
|
266 |
+
metadata[tag] = element.get('content', '')
|
267 |
+
|
268 |
+
return metadata
|
269 |
+
|
270 |
def _clean_text(self, text: str) -> str:
|
271 |
"""Clean extracted text"""
|
272 |
# Remove extra whitespace
|
273 |
text = re.sub(r'\s+', ' ', text)
|
274 |
|
275 |
+
# Remove common patterns
|
276 |
+
patterns = [
|
277 |
+
r'Subscribe.*?newsletter',
|
278 |
+
r'Click here.*?more',
|
279 |
+
r'Advertisement',
|
280 |
+
r'Share this.*?social',
|
281 |
+
r'Follow us on.*?media'
|
282 |
+
]
|
283 |
+
|
284 |
+
for pattern in patterns:
|
285 |
+
text = re.sub(pattern, '', text, flags=re.IGNORECASE)
|
286 |
|
287 |
return text.strip()
|
288 |
|
289 |
+
def _assess_quality(self, content: str) -> float:
|
290 |
+
"""Assess content quality (0-1 score)"""
|
291 |
+
if not content:
|
292 |
+
return 0.0
|
293 |
+
|
294 |
+
score = 0.0
|
295 |
|
296 |
+
# Length check
|
297 |
+
word_count = len(content.split())
|
298 |
+
if word_count >= 50:
|
299 |
+
score += 0.3
|
300 |
+
elif word_count >= 20:
|
301 |
+
score += 0.1
|
302 |
|
303 |
+
# Structure check (sentences)
|
304 |
+
sentence_count = len(re.split(r'[.!?]+', content))
|
305 |
+
if sentence_count >= 3:
|
306 |
+
score += 0.2
|
307 |
+
|
308 |
+
# Language quality (basic)
|
309 |
+
if re.search(r'[A-Z][a-z]+', content): # Proper capitalization
|
310 |
+
score += 0.2
|
311 |
+
|
312 |
+
if not re.search(r'[^\w\s]', content[:100]): # No weird characters at start
|
313 |
+
score += 0.1
|
314 |
+
|
315 |
+
# Readability (simple check)
|
316 |
+
avg_word_length = np.mean([len(word) for word in content.split()])
|
317 |
+
if 3 <= avg_word_length <= 8:
|
318 |
+
score += 0.2
|
319 |
+
|
320 |
+
return min(score, 1.0)
|
321 |
|
322 |
+
class DataProcessor:
|
323 |
+
"""Advanced data processing and cleaning pipeline"""
|
324 |
|
325 |
def __init__(self):
|
326 |
+
self.language_detector = None
|
327 |
+
self.sentiment_analyzer = None
|
328 |
+
self.ner_model = None
|
329 |
+
self._load_models()
|
330 |
|
331 |
+
def _load_models(self):
|
332 |
+
"""Load NLP models for processing"""
|
333 |
+
if not HAS_TRANSFORMERS:
|
334 |
+
return
|
335 |
+
|
336 |
try:
|
337 |
+
# Sentiment analysis
|
338 |
+
self.sentiment_analyzer = pipeline(
|
339 |
+
"sentiment-analysis",
|
340 |
+
model="cardiffnlp/twitter-roberta-base-sentiment-latest"
|
341 |
+
)
|
342 |
+
|
343 |
+
# Named Entity Recognition
|
344 |
+
self.ner_model = pipeline(
|
345 |
+
"ner",
|
346 |
+
model="dbmdz/bert-large-cased-finetuned-conll03-english",
|
347 |
+
aggregation_strategy="simple"
|
348 |
)
|
349 |
+
|
350 |
+
logger.info("✅ NLP models loaded successfully")
|
351 |
except Exception as e:
|
352 |
+
logger.warning(f"⚠️ Could not load NLP models: {e}")
|
353 |
+
|
354 |
+
def process_items(self, items: List[ScrapedItem], processing_options: Dict[str, bool]) -> List[ScrapedItem]:
|
355 |
+
"""Process scraped items with various enhancement options"""
|
356 |
+
processed_items = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
|
358 |
+
for item in items:
|
359 |
+
processed_item = self._process_single_item(item, processing_options)
|
360 |
+
if processed_item:
|
361 |
+
processed_items.append(processed_item)
|
362 |
+
|
363 |
+
return processed_items
|
364 |
+
|
365 |
+
def _process_single_item(self, item: ScrapedItem, options: Dict[str, bool]) -> Optional[ScrapedItem]:
|
366 |
+
"""Process a single item"""
|
367 |
try:
|
368 |
+
# Clean content
|
369 |
+
if options.get('clean_text', True):
|
370 |
+
item.content = self._clean_text_advanced(item.content)
|
371 |
+
|
372 |
+
# Filter by quality
|
373 |
+
if options.get('quality_filter', True) and item.quality_score < 0.3:
|
374 |
+
return None
|
375 |
+
|
376 |
+
# Add sentiment analysis
|
377 |
+
if options.get('add_sentiment', False) and self.sentiment_analyzer:
|
378 |
+
sentiment = self._analyze_sentiment(item.content)
|
379 |
+
item.metadata['sentiment'] = sentiment
|
380 |
+
|
381 |
+
# Add named entities
|
382 |
+
if options.get('extract_entities', False) and self.ner_model:
|
383 |
+
entities = self._extract_entities(item.content)
|
384 |
+
item.metadata['entities'] = entities
|
385 |
+
|
386 |
+
# Add language detection
|
387 |
+
if options.get('detect_language', True):
|
388 |
+
item.language = self._detect_language(item.content)
|
389 |
+
|
390 |
+
return item
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
|
392 |
except Exception as e:
|
393 |
+
logger.error(f"Error processing item {item.id}: {e}")
|
394 |
+
return None
|
395 |
+
|
396 |
+
def _clean_text_advanced(self, text: str) -> str:
|
397 |
+
"""Advanced text cleaning"""
|
398 |
+
# Remove URLs
|
399 |
+
text = re.sub(r'http\S+|www\.\S+', '', text)
|
400 |
+
|
401 |
+
# Remove email addresses
|
402 |
+
text = re.sub(r'\S+@\S+', '', text)
|
403 |
+
|
404 |
+
# Remove excessive punctuation
|
405 |
+
text = re.sub(r'[!?]{2,}', '!', text)
|
406 |
+
text = re.sub(r'\.{3,}', '...', text)
|
407 |
+
|
408 |
+
# Normalize whitespace
|
409 |
+
text = re.sub(r'\s+', ' ', text)
|
|
|
|
|
410 |
|
411 |
+
# Remove very short paragraphs (likely navigation)
|
412 |
+
paragraphs = text.split('\n')
|
413 |
+
paragraphs = [p.strip() for p in paragraphs if len(p.strip()) > 20]
|
414 |
|
415 |
+
return '\n'.join(paragraphs).strip()
|
416 |
+
|
417 |
+
def _analyze_sentiment(self, text: str) -> Dict[str, Any]:
|
418 |
+
"""Analyze sentiment of text"""
|
419 |
+
try:
|
420 |
+
# Truncate text for model limits
|
421 |
+
text_sample = text[:512]
|
422 |
+
result = self.sentiment_analyzer(text_sample)[0]
|
423 |
+
return {
|
424 |
+
'label': result['label'],
|
425 |
+
'score': result['score']
|
426 |
+
}
|
427 |
+
except:
|
428 |
+
return {'label': 'UNKNOWN', 'score': 0.0}
|
429 |
+
|
430 |
+
def _extract_entities(self, text: str) -> List[Dict[str, Any]]:
|
431 |
+
"""Extract named entities"""
|
432 |
+
try:
|
433 |
+
# Truncate text for model limits
|
434 |
+
text_sample = text[:512]
|
435 |
+
entities = self.ner_model(text_sample)
|
436 |
+
return [
|
437 |
+
{
|
438 |
+
'text': ent['word'],
|
439 |
+
'label': ent['entity_group'],
|
440 |
+
'confidence': ent['score']
|
441 |
+
}
|
442 |
+
for ent in entities
|
443 |
+
]
|
444 |
+
except:
|
445 |
+
return []
|
446 |
+
|
447 |
+
def _detect_language(self, text: str) -> str:
|
448 |
+
"""Simple language detection"""
|
449 |
+
# Basic heuristic - could be enhanced with proper language detection
|
450 |
+
if re.search(r'[а-яё]', text.lower()):
|
451 |
+
return 'ru'
|
452 |
+
elif re.search(r'[ñáéíóúü]', text.lower()):
|
453 |
+
return 'es'
|
454 |
+
elif re.search(r'[àâäçéèêëïîôöùûüÿ]', text.lower()):
|
455 |
+
return 'fr'
|
456 |
+
else:
|
457 |
+
return 'en'
|
458 |
+
|
459 |
+
class AnnotationEngine:
|
460 |
+
"""Interactive annotation tools for dataset creation"""
|
461 |
+
|
462 |
+
def __init__(self):
|
463 |
+
self.templates = self._load_templates()
|
464 |
|
465 |
+
def _load_templates(self) -> Dict[str, DatasetTemplate]:
|
466 |
+
"""Load predefined dataset templates"""
|
467 |
+
templates = {
|
468 |
+
'text_classification': DatasetTemplate(
|
469 |
+
name="Text Classification",
|
470 |
+
description="Classify text into predefined categories",
|
471 |
+
task_type="classification",
|
472 |
+
required_fields=["text", "label"],
|
473 |
+
optional_fields=["confidence", "metadata"],
|
474 |
+
example_format={"text": "Sample text", "label": "positive"},
|
475 |
+
instructions="Label each text with the appropriate category"
|
476 |
+
),
|
477 |
+
'sentiment_analysis': DatasetTemplate(
|
478 |
+
name="Sentiment Analysis",
|
479 |
+
description="Analyze emotional tone of text",
|
480 |
+
task_type="classification",
|
481 |
+
required_fields=["text", "sentiment"],
|
482 |
+
optional_fields=["confidence", "aspects"],
|
483 |
+
example_format={"text": "I love this!", "sentiment": "positive"},
|
484 |
+
instructions="Classify the sentiment as positive, negative, or neutral"
|
485 |
+
),
|
486 |
+
'named_entity_recognition': DatasetTemplate(
|
487 |
+
name="Named Entity Recognition",
|
488 |
+
description="Identify and classify named entities in text",
|
489 |
+
task_type="ner",
|
490 |
+
required_fields=["text", "entities"],
|
491 |
+
optional_fields=["metadata"],
|
492 |
+
example_format={
|
493 |
+
"text": "John works at OpenAI in San Francisco",
|
494 |
+
"entities": [
|
495 |
+
{"text": "John", "label": "PERSON", "start": 0, "end": 4},
|
496 |
+
{"text": "OpenAI", "label": "ORG", "start": 14, "end": 20}
|
497 |
+
]
|
498 |
+
},
|
499 |
+
instructions="Mark all named entities (people, organizations, locations, etc.)"
|
500 |
+
),
|
501 |
+
'question_answering': DatasetTemplate(
|
502 |
+
name="Question Answering",
|
503 |
+
description="Create question-answer pairs from text",
|
504 |
+
task_type="qa",
|
505 |
+
required_fields=["context", "question", "answer"],
|
506 |
+
optional_fields=["answer_start", "metadata"],
|
507 |
+
example_format={
|
508 |
+
"context": "The capital of France is Paris.",
|
509 |
+
"question": "What is the capital of France?",
|
510 |
+
"answer": "Paris"
|
511 |
+
},
|
512 |
+
instructions="Create meaningful questions and provide accurate answers"
|
513 |
+
),
|
514 |
+
'summarization': DatasetTemplate(
|
515 |
+
name="Text Summarization",
|
516 |
+
description="Create concise summaries of longer texts",
|
517 |
+
task_type="summarization",
|
518 |
+
required_fields=["text", "summary"],
|
519 |
+
optional_fields=["summary_type", "length"],
|
520 |
+
example_format={
|
521 |
+
"text": "Long article text...",
|
522 |
+
"summary": "Brief summary of the main points"
|
523 |
+
},
|
524 |
+
instructions="Write clear, concise summaries capturing key information"
|
525 |
+
)
|
526 |
+
}
|
527 |
+
return templates
|
528 |
+
|
529 |
+
def create_annotation_interface(self, template_name: str, items: List[ScrapedItem]) -> Dict[str, Any]:
|
530 |
+
"""Create annotation interface for specific template"""
|
531 |
+
template = self.templates.get(template_name)
|
532 |
+
if not template:
|
533 |
+
raise ValueError(f"Unknown template: {template_name}")
|
534 |
|
535 |
+
# Prepare data for annotation
|
536 |
+
annotation_data = []
|
537 |
+
for item in items:
|
538 |
+
annotation_data.append({
|
539 |
+
'id': item.id,
|
540 |
+
'text': item.content[:1000], # Truncate for UI
|
541 |
+
'title': item.title,
|
542 |
+
'url': item.url,
|
543 |
+
'annotations': {}
|
544 |
+
})
|
545 |
|
546 |
+
return {
|
547 |
+
'template': template,
|
548 |
+
'data': annotation_data,
|
549 |
+
'progress': 0,
|
550 |
+
'completed': 0
|
551 |
+
}
|
552 |
|
553 |
+
class DatasetExporter:
|
554 |
+
"""Export datasets in various formats for ML frameworks"""
|
555 |
|
556 |
def __init__(self):
|
557 |
+
self.supported_formats = [
|
558 |
+
'huggingface_datasets',
|
559 |
+
'json',
|
560 |
+
'csv',
|
561 |
+
'parquet',
|
562 |
+
'jsonl',
|
563 |
+
'pytorch',
|
564 |
+
'tensorflow'
|
565 |
+
]
|
566 |
|
567 |
+
def export_dataset(self, items: List[ScrapedItem], template: DatasetTemplate,
|
568 |
+
export_format: str, annotations: Dict[str, Any] = None) -> str:
|
569 |
+
"""Export annotated dataset in specified format"""
|
570 |
try:
|
571 |
+
# Prepare dataset
|
572 |
+
dataset_data = self._prepare_dataset_data(items, template, annotations)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
573 |
|
574 |
+
# Export based on format
|
575 |
+
if export_format == 'huggingface_datasets':
|
576 |
+
return self._export_huggingface(dataset_data, template)
|
577 |
+
elif export_format == 'json':
|
578 |
+
return self._export_json(dataset_data)
|
579 |
+
elif export_format == 'csv':
|
580 |
+
return self._export_csv(dataset_data)
|
581 |
+
elif export_format == 'jsonl':
|
582 |
+
return self._export_jsonl(dataset_data)
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unsupported format: {export_format}")
|
585 |
+
|
586 |
+
except Exception as e:
|
587 |
+
logger.error(f"Export failed: {e}")
|
588 |
+
raise
|
589 |
+
|
590 |
+
def _prepare_dataset_data(self, items: List[ScrapedItem], template: DatasetTemplate,
|
591 |
+
annotations: Dict[str, Any] = None) -> List[Dict[str, Any]]:
|
592 |
+
"""Prepare data according to template format"""
|
593 |
+
dataset_data = []
|
594 |
+
|
595 |
+
for item in items:
|
596 |
+
# Base data from scraped item
|
597 |
+
data_point = {
|
598 |
+
'text': item.content,
|
599 |
+
'title': item.title,
|
600 |
+
'url': item.url,
|
601 |
+
'metadata': item.metadata
|
602 |
+
}
|
603 |
|
604 |
+
# Add annotations if available
|
605 |
+
if annotations and item.id in annotations:
|
606 |
+
item_annotations = annotations[item.id]
|
607 |
+
data_point.update(item_annotations)
|
|
|
|
|
608 |
|
609 |
+
# Format according to template
|
610 |
+
formatted_point = self._format_for_template(data_point, template)
|
611 |
+
if formatted_point:
|
612 |
+
dataset_data.append(formatted_point)
|
613 |
+
|
614 |
+
return dataset_data
|
615 |
+
|
616 |
+
def _format_for_template(self, data_point: Dict[str, Any], template: DatasetTemplate) -> Dict[str, Any]:
|
617 |
+
"""Format data point according to template requirements"""
|
618 |
+
formatted = {}
|
619 |
+
|
620 |
+
# Ensure required fields are present
|
621 |
+
for field in template.required_fields:
|
622 |
+
if field in data_point:
|
623 |
+
formatted[field] = data_point[field]
|
624 |
+
elif field == 'text' and 'content' in data_point:
|
625 |
+
formatted[field] = data_point['content']
|
626 |
+
else:
|
627 |
+
# Skip this data point if required field is missing
|
628 |
+
return None
|
629 |
+
|
630 |
+
# Add optional fields if present
|
631 |
+
for field in template.optional_fields:
|
632 |
+
if field in data_point:
|
633 |
+
formatted[field] = data_point[field]
|
634 |
+
|
635 |
+
return formatted
|
636 |
|
637 |
+
def _export_huggingface(self, dataset_data: List[Dict[str, Any]], template: DatasetTemplate) -> str:
|
638 |
+
"""Export as HuggingFace Dataset"""
|
639 |
+
if not HAS_DATASETS:
|
640 |
+
raise ImportError("datasets library not available")
|
641 |
|
642 |
try:
|
643 |
+
# Create dataset
|
644 |
+
dataset = Dataset.from_list(dataset_data)
|
645 |
+
|
646 |
+
# Create dataset card
|
647 |
+
card_content = f"""
|
648 |
+
# {template.name} Dataset
|
649 |
+
|
650 |
+
## Description
|
651 |
+
{template.description}
|
652 |
+
|
653 |
+
## Task Type
|
654 |
+
{template.task_type}
|
655 |
+
|
656 |
+
## Format
|
657 |
+
{template.example_format}
|
658 |
+
|
659 |
+
## Instructions
|
660 |
+
{template.instructions}
|
661 |
+
|
662 |
+
## Statistics
|
663 |
+
- Total samples: {len(dataset_data)}
|
664 |
+
- Created: {datetime.now().isoformat()}
|
665 |
+
|
666 |
+
## Usage
|
667 |
+
```python
|
668 |
+
from datasets import load_dataset
|
669 |
+
dataset = load_dataset('path/to/dataset')
|
670 |
+
```
|
671 |
+
"""
|
672 |
+
|
673 |
+
# Save dataset
|
674 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
675 |
+
dataset_name = f"{template.name.lower().replace(' ', '_')}_{timestamp}"
|
676 |
|
677 |
+
# Save locally (would push to Hub in production)
|
678 |
+
dataset.save_to_disk(dataset_name)
|
679 |
+
|
680 |
+
# Create info file
|
681 |
+
with open(f"{dataset_name}/README.md", "w") as f:
|
682 |
+
f.write(card_content)
|
683 |
+
|
684 |
+
return dataset_name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
685 |
|
686 |
except Exception as e:
|
687 |
+
logger.error(f"HuggingFace export failed: {e}")
|
688 |
+
raise
|
689 |
+
|
690 |
+
def _export_json(self, dataset_data: List[Dict[str, Any]]) -> str:
|
691 |
+
"""Export as JSON file"""
|
692 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
693 |
+
filename = f"dataset_{timestamp}.json"
|
694 |
+
|
695 |
+
with open(filename, 'w', encoding='utf-8') as f:
|
696 |
+
json.dump(dataset_data, f, indent=2, ensure_ascii=False)
|
697 |
+
|
698 |
+
return filename
|
699 |
+
|
700 |
+
def _export_csv(self, dataset_data: List[Dict[str, Any]]) -> str:
|
701 |
+
"""Export as CSV file"""
|
702 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
703 |
+
filename = f"dataset_{timestamp}.csv"
|
704 |
+
|
705 |
+
df = pd.DataFrame(dataset_data)
|
706 |
+
df.to_csv(filename, index=False)
|
707 |
+
|
708 |
+
return filename
|
709 |
|
710 |
+
def _export_jsonl(self, dataset_data: List[Dict[str, Any]]) -> str:
|
711 |
+
"""Export as JSONL file"""
|
712 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
713 |
+
filename = f"dataset_{timestamp}.jsonl"
|
714 |
+
|
715 |
+
with open(filename, 'w', encoding='utf-8') as f:
|
716 |
+
for item in dataset_data:
|
717 |
+
f.write(json.dumps(item, ensure_ascii=False) + '\n')
|
718 |
+
|
719 |
+
return filename
|
720 |
|
721 |
+
def create_modern_interface():
|
722 |
+
"""Create modern, intuitive interface for AI Dataset Studio"""
|
|
|
723 |
|
724 |
+
# Initialize the studio
|
725 |
+
studio = DatasetStudio()
|
726 |
+
|
727 |
+
# Custom CSS for modern appearance
|
728 |
custom_css = """
|
729 |
.gradio-container {
|
730 |
+
max-width: 1400px;
|
731 |
margin: auto;
|
732 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
733 |
}
|
734 |
+
|
735 |
+
.studio-header {
|
736 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
737 |
color: white;
|
738 |
padding: 2rem;
|
739 |
+
border-radius: 15px;
|
740 |
margin-bottom: 2rem;
|
741 |
+
text-align: center;
|
742 |
+
box-shadow: 0 8px 32px rgba(0,0,0,0.1);
|
743 |
}
|
744 |
+
|
745 |
+
.workflow-card {
|
746 |
+
background: #f8f9ff;
|
747 |
+
border: 2px solid #e1e5ff;
|
748 |
+
border-radius: 12px;
|
749 |
padding: 1.5rem;
|
750 |
margin: 1rem 0;
|
751 |
+
transition: all 0.3s ease;
|
752 |
}
|
753 |
+
|
754 |
+
.workflow-card:hover {
|
755 |
+
border-color: #667eea;
|
756 |
+
box-shadow: 0 4px 20px rgba(102, 126, 234, 0.1);
|
757 |
}
|
758 |
+
|
759 |
+
.step-header {
|
760 |
+
display: flex;
|
761 |
+
align-items: center;
|
762 |
+
margin-bottom: 1rem;
|
763 |
+
font-size: 1.2em;
|
764 |
+
font-weight: 600;
|
765 |
+
color: #4c51bf;
|
766 |
+
}
|
767 |
+
|
768 |
+
.step-number {
|
769 |
+
background: #667eea;
|
770 |
+
color: white;
|
771 |
+
border-radius: 50%;
|
772 |
+
width: 30px;
|
773 |
+
height: 30px;
|
774 |
+
display: flex;
|
775 |
+
align-items: center;
|
776 |
+
justify-content: center;
|
777 |
+
margin-right: 1rem;
|
778 |
font-weight: bold;
|
779 |
}
|
780 |
+
|
781 |
+
.feature-grid {
|
782 |
+
display: grid;
|
783 |
+
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
|
784 |
+
gap: 1rem;
|
785 |
+
margin: 1rem 0;
|
786 |
+
}
|
787 |
+
|
788 |
+
.feature-item {
|
789 |
+
background: white;
|
790 |
+
border: 1px solid #e2e8f0;
|
791 |
+
border-radius: 8px;
|
792 |
+
padding: 1rem;
|
793 |
+
text-align: center;
|
794 |
+
}
|
795 |
+
|
796 |
+
.stat-card {
|
797 |
+
background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
|
798 |
+
color: white;
|
799 |
+
padding: 1rem;
|
800 |
+
border-radius: 10px;
|
801 |
+
text-align: center;
|
802 |
+
margin: 0.5rem;
|
803 |
+
}
|
804 |
+
|
805 |
+
.progress-bar {
|
806 |
+
background: #e2e8f0;
|
807 |
+
border-radius: 10px;
|
808 |
+
height: 8px;
|
809 |
+
overflow: hidden;
|
810 |
+
}
|
811 |
+
|
812 |
+
.progress-fill {
|
813 |
+
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
|
814 |
+
height: 100%;
|
815 |
+
transition: width 0.3s ease;
|
816 |
+
}
|
817 |
+
|
818 |
+
.template-card {
|
819 |
+
border: 2px solid #e2e8f0;
|
820 |
+
border-radius: 10px;
|
821 |
+
padding: 1rem;
|
822 |
+
margin: 0.5rem;
|
823 |
+
cursor: pointer;
|
824 |
+
transition: all 0.3s ease;
|
825 |
+
}
|
826 |
+
|
827 |
+
.template-card:hover {
|
828 |
+
border-color: #667eea;
|
829 |
+
transform: translateY(-2px);
|
830 |
+
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
|
831 |
+
}
|
832 |
+
|
833 |
+
.template-selected {
|
834 |
+
border-color: #667eea;
|
835 |
+
background: #f7fafc;
|
836 |
+
}
|
837 |
+
|
838 |
+
.export-option {
|
839 |
+
background: #f7fafc;
|
840 |
+
border: 1px solid #e2e8f0;
|
841 |
+
border-radius: 8px;
|
842 |
+
padding: 1rem;
|
843 |
+
margin: 0.5rem 0;
|
844 |
+
cursor: pointer;
|
845 |
+
}
|
846 |
+
|
847 |
+
.export-option:hover {
|
848 |
+
background: #edf2f7;
|
849 |
+
border-color: #cbd5e0;
|
850 |
+
}
|
851 |
+
|
852 |
+
.success-message {
|
853 |
+
background: #f0fff4;
|
854 |
+
border: 1px solid #9ae6b4;
|
855 |
+
color: #276749;
|
856 |
+
padding: 1rem;
|
857 |
+
border-radius: 8px;
|
858 |
+
margin: 1rem 0;
|
859 |
+
}
|
860 |
+
|
861 |
+
.error-message {
|
862 |
+
background: #fed7d7;
|
863 |
+
border: 1px solid #feb2b2;
|
864 |
+
color: #c53030;
|
865 |
+
padding: 1rem;
|
866 |
+
border-radius: 8px;
|
867 |
+
margin: 1rem 0;
|
868 |
+
}
|
869 |
"""
|
870 |
|
871 |
+
# Project state for UI
|
872 |
+
project_state = gr.State({})
|
873 |
+
|
874 |
+
with gr.Blocks(css=custom_css, title="AI Dataset Studio", theme=gr.themes.Soft()) as interface:
|
875 |
|
876 |
# Header
|
877 |
gr.HTML("""
|
878 |
+
<div class="studio-header">
|
879 |
+
<h1>🚀 AI Dataset Studio</h1>
|
880 |
+
<p>Create high-quality training datasets without coding - Your personal Scale AI</p>
|
881 |
+
<p style="opacity: 0.9; font-size: 0.9em;">Web Scraping → Data Processing → Annotation → ML-Ready Datasets</p>
|
882 |
</div>
|
883 |
""")
|
884 |
|
885 |
+
# Main workflow tabs
|
886 |
+
with gr.Tabs() as main_tabs:
|
887 |
+
|
888 |
+
# Tab 1: Project Setup
|
889 |
+
with gr.Tab("🎯 Project Setup", id="setup"):
|
890 |
+
gr.HTML('<div class="step-header"><div class="step-number">1</div>Start Your Dataset Project</div>')
|
891 |
|
892 |
+
with gr.Row():
|
893 |
+
with gr.Column(scale=2):
|
894 |
+
gr.HTML("""
|
895 |
+
<div class="workflow-card">
|
896 |
+
<h3>📋 Project Configuration</h3>
|
897 |
+
<p>Define your dataset project and choose the type of AI task you're building for.</p>
|
898 |
+
</div>
|
899 |
+
""")
|
900 |
+
|
901 |
+
project_name = gr.Textbox(
|
902 |
+
label="Project Name",
|
903 |
+
placeholder="e.g., 'News Sentiment Analysis' or 'Product Review Classification'",
|
904 |
+
value="My Dataset Project"
|
905 |
+
)
|
906 |
+
|
907 |
+
# Template selection with visual cards
|
908 |
+
gr.HTML("<h4>🎨 Choose Your Dataset Template</h4>")
|
909 |
+
|
910 |
+
template_choice = gr.Radio(
|
911 |
+
choices=[
|
912 |
+
("📊 Text Classification", "text_classification"),
|
913 |
+
("😊 Sentiment Analysis", "sentiment_analysis"),
|
914 |
+
("👥 Named Entity Recognition", "named_entity_recognition"),
|
915 |
+
("❓ Question Answering", "question_answering"),
|
916 |
+
("📝 Text Summarization", "summarization")
|
917 |
+
],
|
918 |
+
label="Dataset Type",
|
919 |
+
value="text_classification",
|
920 |
+
interactive=True
|
921 |
+
)
|
922 |
+
|
923 |
+
create_project_btn = gr.Button(
|
924 |
+
"🚀 Create Project",
|
925 |
+
variant="primary",
|
926 |
+
size="lg"
|
927 |
+
)
|
928 |
+
|
929 |
+
project_status = gr.Markdown("")
|
930 |
+
|
931 |
+
with gr.Column(scale=1):
|
932 |
+
gr.HTML("""
|
933 |
+
<div class="workflow-card">
|
934 |
+
<h3>💡 Template Guide</h3>
|
935 |
+
<div class="feature-grid">
|
936 |
+
<div class="feature-item">
|
937 |
+
<h4>📊 Text Classification</h4>
|
938 |
+
<p>Categorize text into predefined labels</p>
|
939 |
+
<small>Great for: Spam detection, topic classification</small>
|
940 |
+
</div>
|
941 |
+
<div class="feature-item">
|
942 |
+
<h4>😊 Sentiment Analysis</h4>
|
943 |
+
<p>Analyze emotional tone and opinions</p>
|
944 |
+
<small>Great for: Review analysis, social media monitoring</small>
|
945 |
+
</div>
|
946 |
+
<div class="feature-item">
|
947 |
+
<h4>👥 Named Entity Recognition</h4>
|
948 |
+
<p>Identify people, places, organizations</p>
|
949 |
+
<small>Great for: Information extraction, content tagging</small>
|
950 |
+
</div>
|
951 |
+
</div>
|
952 |
+
</div>
|
953 |
+
""")
|
954 |
+
|
955 |
+
# Tab 2: Data Collection
|
956 |
+
with gr.Tab("🕷️ Data Collection", id="collection"):
|
957 |
+
gr.HTML('<div class="step-header"><div class="step-number">2</div>Collect Your Data</div>')
|
958 |
+
|
959 |
+
with gr.Row():
|
960 |
+
with gr.Column(scale=2):
|
961 |
+
gr.HTML("""
|
962 |
+
<div class="workflow-card">
|
963 |
+
<h3>🌐 Web Scraping</h3>
|
964 |
+
<p>Provide URLs to scrape content automatically. Our AI will extract clean, structured text.</p>
|
965 |
+
</div>
|
966 |
+
""")
|
967 |
+
|
968 |
+
# URL input methods
|
969 |
+
with gr.Tabs():
|
970 |
+
with gr.Tab("📝 Manual Input"):
|
971 |
+
urls_input = gr.Textbox(
|
972 |
+
label="URLs to Scrape",
|
973 |
+
placeholder="https://example.com/article1\nhttps://example.com/article2\n...",
|
974 |
+
lines=8,
|
975 |
+
info="Enter one URL per line"
|
976 |
+
)
|
977 |
+
|
978 |
+
with gr.Tab("📎 File Upload"):
|
979 |
+
urls_file = gr.File(
|
980 |
+
label="Upload URL List",
|
981 |
+
file_types=[".txt", ".csv"],
|
982 |
+
info="Upload a text file with URLs (one per line) or CSV with 'url' column"
|
983 |
+
)
|
984 |
+
|
985 |
+
scrape_btn = gr.Button("🚀 Start Scraping", variant="primary", size="lg")
|
986 |
+
|
987 |
+
# Progress tracking
|
988 |
+
scraping_progress = gr.Progress()
|
989 |
+
scraping_status = gr.Markdown("")
|
990 |
+
|
991 |
+
with gr.Column(scale=1):
|
992 |
+
gr.HTML("""
|
993 |
+
<div class="workflow-card">
|
994 |
+
<h3>⚡ Features</h3>
|
995 |
+
<ul style="list-style: none; padding: 0;">
|
996 |
+
<li>✅ Smart content extraction</li>
|
997 |
+
<li>✅ Quality scoring</li>
|
998 |
+
<li>✅ Duplicate detection</li>
|
999 |
+
<li>✅ Security validation</li>
|
1000 |
+
<li>✅ Metadata extraction</li>
|
1001 |
+
<li>✅ Rate limiting</li>
|
1002 |
+
</ul>
|
1003 |
+
</div>
|
1004 |
+
""")
|
1005 |
+
|
1006 |
+
# Quick stats
|
1007 |
+
collection_stats = gr.HTML("")
|
1008 |
+
|
1009 |
+
# Tab 3: Data Processing
|
1010 |
+
with gr.Tab("⚙️ Data Processing", id="processing"):
|
1011 |
+
gr.HTML('<div class="step-header"><div class="step-number">3</div>Clean & Enhance Your Data</div>')
|
1012 |
|
1013 |
with gr.Row():
|
1014 |
+
with gr.Column(scale=2):
|
1015 |
+
gr.HTML("""
|
1016 |
+
<div class="workflow-card">
|
1017 |
+
<h3>🔧 Processing Options</h3>
|
1018 |
+
<p>Configure how to clean and enhance your scraped data with AI-powered analysis.</p>
|
1019 |
+
</div>
|
1020 |
+
""")
|
1021 |
+
|
1022 |
+
# Processing options
|
1023 |
+
with gr.Row():
|
1024 |
+
with gr.Column():
|
1025 |
+
clean_text = gr.Checkbox(label="🧹 Advanced Text Cleaning", value=True)
|
1026 |
+
quality_filter = gr.Checkbox(label="🎯 Quality Filtering", value=True)
|
1027 |
+
detect_language = gr.Checkbox(label="🌍 Language Detection", value=True)
|
1028 |
+
|
1029 |
+
with gr.Column():
|
1030 |
+
add_sentiment = gr.Checkbox(label="😊 Sentiment Analysis", value=False)
|
1031 |
+
extract_entities = gr.Checkbox(label="👥 Entity Extraction", value=False)
|
1032 |
+
deduplicate = gr.Checkbox(label="🔄 Remove Duplicates", value=True)
|
1033 |
+
|
1034 |
+
process_btn = gr.Button("⚙️ Process Data", variant="primary", size="lg")
|
1035 |
+
processing_status = gr.Markdown("")
|
1036 |
+
|
1037 |
+
with gr.Column(scale=1):
|
1038 |
+
gr.HTML("""
|
1039 |
+
<div class="workflow-card">
|
1040 |
+
<h3>📊 Processing Stats</h3>
|
1041 |
+
<div id="processing-stats"></div>
|
1042 |
+
</div>
|
1043 |
+
""")
|
1044 |
+
|
1045 |
+
processing_stats = gr.HTML("")
|
1046 |
+
|
1047 |
+
# Tab 4: Data Preview
|
1048 |
+
with gr.Tab("👀 Data Preview", id="preview"):
|
1049 |
+
gr.HTML('<div class="step-header"><div class="step-number">4</div>Review Your Dataset</div>')
|
1050 |
|
1051 |
+
with gr.Row():
|
1052 |
+
with gr.Column(scale=2):
|
1053 |
+
gr.HTML("""
|
1054 |
+
<div class="workflow-card">
|
1055 |
+
<h3>📋 Dataset Preview</h3>
|
1056 |
+
<p>Review your processed data before annotation or export.</p>
|
1057 |
+
</div>
|
1058 |
+
""")
|
1059 |
+
|
1060 |
+
refresh_preview_btn = gr.Button("🔄 Refresh Preview", variant="secondary")
|
1061 |
+
|
1062 |
+
# Data preview table
|
1063 |
+
data_preview = gr.DataFrame(
|
1064 |
+
headers=["Title", "Content Preview", "Word Count", "Quality Score", "URL"],
|
1065 |
+
label="Dataset Preview",
|
1066 |
+
interactive=False
|
1067 |
+
)
|
1068 |
+
|
1069 |
+
with gr.Column(scale=1):
|
1070 |
+
gr.HTML("""
|
1071 |
+
<div class="workflow-card">
|
1072 |
+
<h3>📈 Dataset Statistics</h3>
|
1073 |
+
</div>
|
1074 |
+
""")
|
1075 |
+
|
1076 |
+
dataset_stats = gr.JSON(label="Statistics")
|
1077 |
+
|
1078 |
+
# Tab 5: Export
|
1079 |
+
with gr.Tab("📤 Export Dataset", id="export"):
|
1080 |
+
gr.HTML('<div class="step-header"><div class="step-number">5</div>Export Your Dataset</div>')
|
1081 |
|
1082 |
+
with gr.Row():
|
1083 |
+
with gr.Column(scale=2):
|
1084 |
+
gr.HTML("""
|
1085 |
+
<div class="workflow-card">
|
1086 |
+
<h3>💾 Export Options</h3>
|
1087 |
+
<p>Export your dataset in various formats for different ML frameworks and platforms.</p>
|
1088 |
+
</div>
|
1089 |
+
""")
|
1090 |
+
|
1091 |
+
# Export format selection
|
1092 |
+
export_format = gr.Radio(
|
1093 |
+
choices=[
|
1094 |
+
("🤗 HuggingFace Datasets", "huggingface_datasets"),
|
1095 |
+
("📄 JSON", "json"),
|
1096 |
+
("📊 CSV", "csv"),
|
1097 |
+
("📋 JSONL", "jsonl"),
|
1098 |
+
("⚡ Parquet", "parquet")
|
1099 |
+
],
|
1100 |
+
label="Export Format",
|
1101 |
+
value="json"
|
1102 |
+
)
|
1103 |
+
|
1104 |
+
# Template for export
|
1105 |
+
export_template = gr.Dropdown(
|
1106 |
+
choices=[
|
1107 |
+
"text_classification",
|
1108 |
+
"sentiment_analysis",
|
1109 |
+
"named_entity_recognition",
|
1110 |
+
"question_answering",
|
1111 |
+
"summarization"
|
1112 |
+
],
|
1113 |
+
label="Dataset Template",
|
1114 |
+
value="text_classification"
|
1115 |
+
)
|
1116 |
+
|
1117 |
+
export_btn = gr.Button("📤 Export Dataset", variant="primary", size="lg")
|
1118 |
+
|
1119 |
+
# Export results
|
1120 |
+
export_status = gr.Markdown("")
|
1121 |
+
export_file = gr.File(label="Download Dataset", visible=False)
|
1122 |
+
|
1123 |
+
with gr.Column(scale=1):
|
1124 |
+
gr.HTML("""
|
1125 |
+
<div class="workflow-card">
|
1126 |
+
<h3>📋 Export Formats</h3>
|
1127 |
+
<div class="feature-item">
|
1128 |
+
<h4>🤗 HuggingFace</h4>
|
1129 |
+
<p>Ready for transformers library</p>
|
1130 |
+
</div>
|
1131 |
+
<div class="feature-item">
|
1132 |
+
<h4>📄 JSON/JSONL</h4>
|
1133 |
+
<p>Universal format for any framework</p>
|
1134 |
+
</div>
|
1135 |
+
<div class="feature-item">
|
1136 |
+
<h4>📊 CSV</h4>
|
1137 |
+
<p>Easy analysis in Excel/Pandas</p>
|
1138 |
+
</div>
|
1139 |
+
</div>
|
1140 |
+
""")
|
1141 |
+
|
1142 |
+
# Event handlers
|
1143 |
+
def create_project(name, template):
|
1144 |
+
"""Create new project"""
|
1145 |
+
if not name.strip():
|
1146 |
+
return "❌ Please enter a project name", {}
|
1147 |
+
|
1148 |
+
project = studio.start_new_project(name.strip(), template)
|
1149 |
+
status = f"""
|
1150 |
+
✅ **Project Created Successfully!**
|
1151 |
+
|
1152 |
+
**Project:** {project['name']}
|
1153 |
+
**Type:** {template.replace('_', ' ').title()}
|
1154 |
+
**ID:** {project['id'][:8]}...
|
1155 |
+
**Created:** {project['created_at'][:19]}
|
1156 |
+
|
1157 |
+
👉 **Next Step:** Go to the Data Collection tab to start scraping URLs
|
1158 |
+
"""
|
1159 |
+
return status, project
|
1160 |
+
|
1161 |
+
def scrape_urls_handler(urls_text, urls_file, project, progress=gr.Progress()):
|
1162 |
+
"""Handle URL scraping"""
|
1163 |
+
if not project:
|
1164 |
+
return "❌ Please create a project first", ""
|
1165 |
+
|
1166 |
+
# Process URLs from text input or file
|
1167 |
+
urls = []
|
1168 |
+
if urls_text:
|
1169 |
+
urls = [url.strip() for url in urls_text.split('\n') if url.strip()]
|
1170 |
+
elif urls_file:
|
1171 |
+
# Handle file upload (simplified)
|
1172 |
+
try:
|
1173 |
+
content = urls_file.read().decode('utf-8')
|
1174 |
+
urls = [url.strip() for url in content.split('\n') if url.strip()]
|
1175 |
+
except:
|
1176 |
+
return "❌ Error reading uploaded file", ""
|
1177 |
+
|
1178 |
+
if not urls:
|
1179 |
+
return "❌ No URLs provided", ""
|
1180 |
+
|
1181 |
+
# Progress callback
|
1182 |
+
def progress_callback(pct, msg):
|
1183 |
+
progress(pct, desc=msg)
|
1184 |
+
|
1185 |
+
# Scrape URLs
|
1186 |
+
success_count, errors = studio.scrape_urls(urls, progress_callback)
|
1187 |
+
|
1188 |
+
if success_count > 0:
|
1189 |
+
stats_html = f"""
|
1190 |
+
<div class="stat-card">
|
1191 |
+
<h3>✅ Scraping Complete</h3>
|
1192 |
+
<p><strong>{success_count}</strong> items collected</p>
|
1193 |
+
<p><strong>{len(urls) - success_count}</strong> failed</p>
|
1194 |
+
</div>
|
1195 |
+
"""
|
1196 |
|
1197 |
+
status = f"""
|
1198 |
+
✅ **Scraping Complete!**
|
|
|
|
|
|
|
|
|
|
|
|
|
1199 |
|
1200 |
+
**Successfully scraped:** {success_count} URLs
|
1201 |
+
**Failed:** {len(urls) - success_count} URLs
|
|
|
|
|
|
|
1202 |
|
1203 |
+
👉 **Next Step:** Go to Data Processing tab to clean and enhance your data
|
1204 |
+
"""
|
1205 |
|
1206 |
+
return status, stats_html
|
1207 |
+
else:
|
1208 |
+
return f"❌ Scraping failed: {', '.join(errors)}", ""
|
1209 |
+
|
1210 |
+
def process_data_handler(clean_text, quality_filter, detect_language,
|
1211 |
+
add_sentiment, extract_entities, deduplicate, project):
|
1212 |
+
"""Handle data processing"""
|
1213 |
+
if not project:
|
1214 |
+
return "❌ Please create a project first", ""
|
1215 |
+
|
1216 |
+
if not studio.scraped_items:
|
1217 |
+
return "❌ No scraped data to process. Please scrape URLs first.", ""
|
1218 |
+
|
1219 |
+
# Configure processing options
|
1220 |
+
options = {
|
1221 |
+
'clean_text': clean_text,
|
1222 |
+
'quality_filter': quality_filter,
|
1223 |
+
'detect_language': detect_language,
|
1224 |
+
'add_sentiment': add_sentiment,
|
1225 |
+
'extract_entities': extract_entities,
|
1226 |
+
'deduplicate': deduplicate
|
1227 |
+
}
|
1228 |
+
|
1229 |
+
# Process data
|
1230 |
+
processed_count = studio.process_data(options)
|
1231 |
+
|
1232 |
+
if processed_count > 0:
|
1233 |
+
stats = studio.get_data_statistics()
|
1234 |
+
stats_html = f"""
|
1235 |
+
<div class="stat-card">
|
1236 |
+
<h3>⚙️ Processing Complete</h3>
|
1237 |
+
<p><strong>{processed_count}</strong> items processed</p>
|
1238 |
+
<p>Avg Quality: <strong>{stats.get('avg_quality_score', 0)}</strong></p>
|
1239 |
+
<p>Avg Words: <strong>{stats.get('avg_word_count', 0)}</strong></p>
|
1240 |
+
</div>
|
1241 |
+
"""
|
1242 |
+
|
1243 |
+
status = f"""
|
1244 |
+
✅ **Processing Complete!**
|
1245 |
+
|
1246 |
+
**Processed items:** {processed_count}
|
1247 |
+
**Average quality score:** {stats.get('avg_quality_score', 0)}
|
1248 |
+
**Average word count:** {stats.get('avg_word_count', 0)}
|
1249 |
+
|
1250 |
+
👉 **Next Step:** Check the Data Preview tab to review your dataset
|
1251 |
+
"""
|
1252 |
+
|
1253 |
+
return status, stats_html
|
1254 |
+
else:
|
1255 |
+
return "❌ No items passed processing filters", ""
|
1256 |
+
|
1257 |
+
def refresh_preview_handler(project):
|
1258 |
+
"""Refresh data preview"""
|
1259 |
+
if not project:
|
1260 |
+
return None, {}
|
1261 |
+
|
1262 |
+
preview_data = studio.get_data_preview()
|
1263 |
+
stats = studio.get_data_statistics()
|
1264 |
+
|
1265 |
+
if preview_data:
|
1266 |
+
# Convert to DataFrame format
|
1267 |
+
df_data = []
|
1268 |
+
for item in preview_data:
|
1269 |
+
df_data.append([
|
1270 |
+
item['title'][:50] + "..." if len(item['title']) > 50 else item['title'],
|
1271 |
+
item['content_preview'],
|
1272 |
+
item['word_count'],
|
1273 |
+
item['quality_score'],
|
1274 |
+
item['url'][:50] + "..." if len(item['url']) > 50 else item['url']
|
1275 |
+
])
|
1276 |
+
|
1277 |
+
return df_data, stats
|
1278 |
+
|
1279 |
+
return None, {}
|
1280 |
+
|
1281 |
+
def export_dataset_handler(export_format, export_template, project):
|
1282 |
+
"""Handle dataset export"""
|
1283 |
+
if not project:
|
1284 |
+
return "❌ Please create a project first", None
|
1285 |
+
|
1286 |
+
if not studio.processed_items and not studio.scraped_items:
|
1287 |
+
return "❌ No data to export. Please scrape and process data first.", None
|
1288 |
+
|
1289 |
+
try:
|
1290 |
+
# Export dataset
|
1291 |
+
filename = studio.export_dataset(export_template, export_format)
|
1292 |
+
|
1293 |
+
status = f"""
|
1294 |
+
✅ **Export Successful!**
|
1295 |
+
|
1296 |
+
**Format:** {export_format}
|
1297 |
+
**Template:** {export_template.replace('_', ' ').title()}
|
1298 |
+
**File:** {filename}
|
1299 |
+
|
1300 |
+
📥 **Download your dataset using the link below**
|
1301 |
+
"""
|
1302 |
+
|
1303 |
+
return status, filename
|
1304 |
+
|
1305 |
+
except Exception as e:
|
1306 |
+
return f"❌ Export failed: {str(e)}", None
|
1307 |
+
|
1308 |
+
# Connect event handlers
|
1309 |
+
create_project_btn.click(
|
1310 |
+
fn=create_project,
|
1311 |
+
inputs=[project_name, template_choice],
|
1312 |
+
outputs=[project_status, project_state]
|
1313 |
+
)
|
1314 |
|
|
|
1315 |
scrape_btn.click(
|
1316 |
+
fn=scrape_urls_handler,
|
1317 |
+
inputs=[urls_input, urls_file, project_state],
|
1318 |
+
outputs=[scraping_status, collection_stats]
|
1319 |
+
)
|
1320 |
+
|
1321 |
+
process_btn.click(
|
1322 |
+
fn=process_data_handler,
|
1323 |
+
inputs=[clean_text, quality_filter, detect_language,
|
1324 |
+
add_sentiment, extract_entities, deduplicate, project_state],
|
1325 |
+
outputs=[processing_status, processing_stats]
|
1326 |
+
)
|
1327 |
+
|
1328 |
+
refresh_preview_btn.click(
|
1329 |
+
fn=refresh_preview_handler,
|
1330 |
+
inputs=[project_state],
|
1331 |
+
outputs=[data_preview, dataset_stats]
|
1332 |
)
|
1333 |
|
1334 |
export_btn.click(
|
1335 |
+
fn=export_dataset_handler,
|
1336 |
+
inputs=[export_format, export_template, project_state],
|
1337 |
+
outputs=[export_status, export_file]
|
1338 |
)
|
1339 |
|
1340 |
+
# Auto-refresh preview when processing completes
|
1341 |
+
processing_status.change(
|
1342 |
+
fn=refresh_preview_handler,
|
1343 |
+
inputs=[project_state],
|
1344 |
+
outputs=[data_preview, dataset_stats]
|
1345 |
)
|
1346 |
|
1347 |
return interface
|
1348 |
|
1349 |
# Launch the application
|
1350 |
if __name__ == "__main__":
|
1351 |
+
logger.info("🚀 Starting AI Dataset Studio...")
|
1352 |
+
|
1353 |
+
# Check available features
|
1354 |
+
features = []
|
1355 |
+
if HAS_TRANSFORMERS:
|
1356 |
+
features.append("✅ AI Models")
|
1357 |
+
else:
|
1358 |
+
features.append("⚠️ Basic Processing")
|
1359 |
+
|
1360 |
+
if HAS_NLTK:
|
1361 |
+
features.append("✅ Advanced NLP")
|
1362 |
+
else:
|
1363 |
+
features.append("⚠️ Basic NLP")
|
1364 |
+
|
1365 |
+
if HAS_DATASETS:
|
1366 |
+
features.append("✅ HuggingFace Integration")
|
1367 |
+
else:
|
1368 |
+
features.append("⚠️ Standard Export Only")
|
1369 |
+
|
1370 |
+
logger.info(f"📊 Features: {' | '.join(features)}")
|
1371 |
+
|
1372 |
+
try:
|
1373 |
+
interface = create_modern_interface()
|
1374 |
+
logger.info("✅ Interface created successfully")
|
1375 |
+
|
1376 |
+
interface.launch(
|
1377 |
+
server_name="0.0.0.0",
|
1378 |
+
server_port=7860,
|
1379 |
+
share=False,
|
1380 |
+
show_error=True,
|
1381 |
+
debug=False
|
1382 |
+
)
|
1383 |
+
|
1384 |
+
except Exception as e:
|
1385 |
+
logger.error(f"❌ Failed to launch application: {e}")
|
1386 |
+
raise
|