""" šŸš€ AI Dataset Studio with Perplexity AI Integration A comprehensive platform for creating high-quality training datasets using AI-powered source discovery """ import gradio as gr import pandas as pd import requests import json import logging import os import sys import time import re from datetime import datetime from typing import List, Dict, Optional, Tuple, Any from urllib.parse import urlparse, urljoin from dataclasses import dataclass, asdict import traceback # Configure logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) # Try to import required packages with fallbacks try: from bs4 import BeautifulSoup logger.info("āœ… BeautifulSoup imported successfully") except ImportError as e: logger.error("āŒ Failed to import BeautifulSoup: %s", e) sys.exit(1) try: import nltk from nltk.corpus import stopwords from nltk.tokenize import word_tokenize, sent_tokenize logger.info("āœ… NLTK imported successfully") HAS_NLTK = True except ImportError: logger.warning("āš ļø NLTK not available - using basic text processing") HAS_NLTK = False try: from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification import torch logger.info("āœ… Transformers imported successfully") HAS_TRANSFORMERS = True except ImportError: logger.warning("āš ļø Transformers not available - using extractive summaries") HAS_TRANSFORMERS = False # Import Perplexity client try: from perplexity_client import PerplexityClient, SearchType, SourceResult, SearchResults logger.info("āœ… Perplexity client imported successfully") HAS_PERPLEXITY = True except ImportError: logger.warning("āš ļø Perplexity client not available - manual source entry only") HAS_PERPLEXITY = False # Dataset templates DATASET_TEMPLATES = { "sentiment_analysis": { "name": "šŸ“Š Sentiment Analysis", "description": "Classify text as positive, negative, or neutral", "fields": ["text", "sentiment"], "example": {"text": "This product is amazing!", "sentiment": "positive"}, "search_queries": ["product reviews", "customer feedback", "social media posts", "movie reviews"] }, "text_classification": { "name": "šŸ“‚ Text Classification", "description": "Categorize text into predefined classes", "fields": ["text", "category"], "example": {"text": "Breaking: Stock market reaches new high", "category": "finance"}, "search_queries": ["news articles", "blog posts", "academic papers", "forum discussions"] }, "named_entity_recognition": { "name": "šŸ·ļø Named Entity Recognition", "description": "Identify people, places, organizations in text", "fields": ["text", "entities"], "example": {"text": "Apple Inc. was founded by Steve Jobs in California", "entities": [{"text": "Apple Inc.", "label": "ORG"}, {"text": "Steve Jobs", "label": "PERSON"}]}, "search_queries": ["news articles", "biographies", "company reports", "wikipedia articles"] }, "question_answering": { "name": "ā“ Question Answering", "description": "Extract answers from context passages", "fields": ["context", "question", "answer"], "example": {"context": "The capital of France is Paris", "question": "What is the capital of France?", "answer": "Paris"}, "search_queries": ["FAQ pages", "educational content", "interview transcripts", "knowledge bases"] }, "text_summarization": { "name": "šŸ“ Text Summarization", "description": "Generate concise summaries of longer texts", "fields": ["text", "summary"], "example": {"text": "Long article content...", "summary": "Brief summary of key points"}, "search_queries": ["news articles", "research papers", "blog posts", "reports"] }, "translation": { "name": "🌐 Translation", "description": "Translate text between languages", "fields": ["source_text", "target_text", "source_lang", "target_lang"], "example": {"source_text": "Hello world", "target_text": "Hola mundo", "source_lang": "en", "target_lang": "es"}, "search_queries": ["multilingual websites", "international news", "translation datasets", "parallel corpora"] } } class DatasetStudio: """ šŸŽÆ Main Dataset Studio Class Handles all core functionality for dataset creation """ def __init__(self): """Initialize the Dataset Studio""" logger.info("šŸš€ Initializing AI Dataset Studio...") # Initialize components self.projects = {} self.current_project = None self.scraped_data = [] self.processed_data = [] # Initialize AI models if available self.sentiment_analyzer = None self.summarizer = None self.ner_model = None # Initialize Perplexity client self.perplexity_client = None if HAS_PERPLEXITY: try: api_key = os.getenv('PERPLEXITY_API_KEY') if api_key: self.perplexity_client = PerplexityClient(api_key) logger.info("āœ… Perplexity AI client initialized") else: logger.warning("āš ļø PERPLEXITY_API_KEY not found - manual source entry only") except Exception as e: logger.error(f"āŒ Failed to initialize Perplexity client: {e}") self._load_models() logger.info("āœ… Dataset Studio initialized successfully") def _load_models(self): """Load AI models for processing""" if not HAS_TRANSFORMERS: logger.info("āš ļø Skipping model loading - transformers not available") return try: # Load sentiment analysis model logger.info("šŸ“¦ Loading sentiment analysis model...") self.sentiment_analyzer = pipeline( "sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment-latest", return_all_scores=True ) logger.info("āœ… Sentiment analyzer loaded") except Exception as e: logger.warning(f"āš ļø Could not load sentiment analyzer: {e}") try: # Load summarization model logger.info("šŸ“¦ Loading summarization model...") self.summarizer = pipeline( "summarization", model="facebook/bart-large-cnn", max_length=150, min_length=30, do_sample=False ) logger.info("āœ… Summarizer loaded") except Exception as e: logger.warning(f"āš ļø Could not load summarizer: {e}") try: # Load NER model logger.info("šŸ“¦ Loading NER model...") self.ner_model = pipeline( "ner", model="dbmdz/bert-large-cased-finetuned-conll03-english", aggregation_strategy="simple" ) logger.info("āœ… NER model loaded") except Exception as e: logger.warning(f"āš ļø Could not load NER model: {e}") def discover_sources_with_ai( self, project_description: str, max_sources: int = 20, search_type: str = "general", include_academic: bool = True, include_news: bool = True ) -> Tuple[str, str]: """ 🧠 Discover sources using Perplexity AI Args: project_description: Description of the dataset project max_sources: Maximum number of sources to find search_type: Type of search (general, academic, news, etc.) include_academic: Include academic sources include_news: Include news sources Returns: Tuple of (status_message, sources_json) """ if not self.perplexity_client: return "āŒ Perplexity AI not available. Please set PERPLEXITY_API_KEY environment variable.", "[]" try: logger.info(f"šŸ” Discovering sources for: {project_description}") # Map string to enum search_type_enum = getattr(SearchType, search_type.upper(), SearchType.GENERAL) # Discover sources results = self.perplexity_client.discover_sources( project_description=project_description, search_type=search_type_enum, max_sources=max_sources, include_academic=include_academic, include_news=include_news ) if not results.sources: return "āš ļø No sources found. Try adjusting your search terms.", "[]" # Format results for display sources_data = [] for source in results.sources: sources_data.append({ "URL": source.url, "Title": source.title, "Description": source.description, "Type": source.source_type, "Domain": source.domain, "Quality Score": f"{source.relevance_score:.1f}/10" }) status = f"āœ… Found {len(results.sources)} sources in {results.search_time:.1f}s" if results.suggestions: status += f"\nšŸ’” Suggestions: {', '.join(results.suggestions[:3])}" return status, json.dumps(sources_data, indent=2) except Exception as e: logger.error(f"āŒ Error discovering sources: {e}") return f"āŒ Error: {str(e)}", "[]" def extract_urls_from_sources(self, sources_json: str) -> List[str]: """Extract URLs from discovered sources JSON""" try: sources = json.loads(sources_json) if isinstance(sources, list): return [source.get("URL", "") for source in sources if source.get("URL")] return [] except: return [] def create_project(self, name: str, template: str, description: str) -> str: """Create a new dataset project""" if not name.strip(): return "āŒ Please provide a project name" project_id = f"project_{int(time.time())}" self.projects[project_id] = { "name": name, "template": template, "description": description, "created_at": datetime.now().isoformat(), "urls": [], "data": [], "processed_data": [] } self.current_project = project_id template_info = DATASET_TEMPLATES.get(template, {}) status = f"āœ… Project '{name}' created successfully!\n" status += f"šŸ“‹ Template: {template_info.get('name', template)}\n" status += f"šŸ“ Description: {description}\n" status += f"šŸ†” Project ID: {project_id}" return status def scrape_urls(self, urls_text: str, progress=gr.Progress()) -> Tuple[str, str]: """Scrape content from provided URLs""" if not self.current_project: return "āŒ Please create a project first", "" # Parse URLs urls = [] for line in urls_text.strip().split('\n'): url = line.strip() if url and self._is_valid_url(url): urls.append(url) if not urls: return "āŒ No valid URLs found", "" scraped_data = [] failed_urls = [] progress(0, desc="Starting scraping...") for i, url in enumerate(urls): try: progress((i + 1) / len(urls), desc=f"Scraping {i + 1}/{len(urls)}") logger.info(f"šŸ” Scraping: {url}") # Make request headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' } response = requests.get(url, headers=headers, timeout=10) response.raise_for_status() # Parse content soup = BeautifulSoup(response.content, 'html.parser') # Extract text content title = self._extract_title(soup) content = self._extract_content(soup) if content: scraped_data.append({ 'url': url, 'title': title, 'content': content, 'length': len(content), 'scraped_at': datetime.now().isoformat() }) logger.info(f"āœ… Scraped {len(content)} characters from {url}") else: failed_urls.append(url) logger.warning(f"āš ļø No content extracted from {url}") # Rate limiting time.sleep(0.5) except Exception as e: failed_urls.append(url) logger.error(f"āŒ Failed to scrape {url}: {e}") # Store results self.projects[self.current_project]['urls'] = urls self.projects[self.current_project]['data'] = scraped_data self.scraped_data = scraped_data # Create status message status = f"āœ… Scraping completed!\n" status += f"šŸ“Š Successfully scraped: {len(scraped_data)} URLs\n" status += f"āŒ Failed: {len(failed_urls)} URLs\n" status += f"šŸ“ Total content: {sum(item['length'] for item in scraped_data):,} characters" if failed_urls: status += f"\n\nFailed URLs:\n" + "\n".join(f"• {url}" for url in failed_urls[:5]) if len(failed_urls) > 5: status += f"\n... and {len(failed_urls) - 5} more" # Create preview data preview_data = [] for item in scraped_data[:10]: # Show first 10 preview_data.append({ "Title": item['title'][:50] + "..." if len(item['title']) > 50 else item['title'], "URL": item['url'], "Length": f"{item['length']:,} chars", "Preview": item['content'][:100] + "..." if len(item['content']) > 100 else item['content'] }) return status, json.dumps(preview_data, indent=2) def process_data(self, template: str, progress=gr.Progress()) -> Tuple[str, str]: """Process scraped data according to template""" if not self.scraped_data: return "āŒ No scraped data available. Please scrape URLs first.", "" template_config = DATASET_TEMPLATES.get(template, {}) if not template_config: return f"āŒ Unknown template: {template}", "" processed_data = [] progress(0, desc="Starting data processing...") for i, item in enumerate(self.scraped_data): try: progress((i + 1) / len(self.scraped_data), desc=f"Processing {i + 1}/{len(self.scraped_data)}") content = item['content'] # Process based on template if template == "sentiment_analysis": processed_item = self._process_sentiment_analysis(item) elif template == "text_classification": processed_item = self._process_text_classification(item) elif template == "named_entity_recognition": processed_item = self._process_ner(item) elif template == "question_answering": processed_item = self._process_qa(item) elif template == "text_summarization": processed_item = self._process_summarization(item) elif template == "translation": processed_item = self._process_translation(item) else: processed_item = self._process_generic(item) if processed_item: processed_data.extend(processed_item) except Exception as e: logger.error(f"āŒ Error processing item {i}: {e}") continue # Store processed data self.processed_data = processed_data if self.current_project: self.projects[self.current_project]['processed_data'] = processed_data # Create status status = f"āœ… Processing completed!\n" status += f"šŸ“Š Generated {len(processed_data)} training examples\n" status += f"šŸ“‹ Template: {template_config['name']}\n" status += f"šŸ·ļø Fields: {', '.join(template_config['fields'])}" # Create preview preview_data = processed_data[:10] if processed_data else [] return status, json.dumps(preview_data, indent=2) def _process_sentiment_analysis(self, item: Dict) -> List[Dict]: """Process item for sentiment analysis""" content = item['content'] # Split into sentences for more training examples if HAS_NLTK: try: sentences = sent_tokenize(content) except: sentences = content.split('. ') else: sentences = content.split('. ') results = [] for sentence in sentences: sentence = sentence.strip() if len(sentence) < 10 or len(sentence) > 500: # Filter by length continue # Use AI model if available if self.sentiment_analyzer: try: prediction = self.sentiment_analyzer(sentence)[0] # Map labels label_map = {'POSITIVE': 'positive', 'NEGATIVE': 'negative', 'NEUTRAL': 'neutral'} sentiment = label_map.get(prediction[0]['label'], 'neutral') confidence = prediction[0]['score'] # Only include high-confidence predictions if confidence > 0.7: results.append({ 'text': sentence, 'sentiment': sentiment, 'confidence': confidence, 'source_url': item['url'] }) except Exception as e: logger.debug(f"Sentiment analysis failed: {e}") continue else: # Fallback: keyword-based sentiment sentiment = self._keyword_sentiment(sentence) results.append({ 'text': sentence, 'sentiment': sentiment, 'source_url': item['url'] }) return results[:20] # Limit per document def _process_text_classification(self, item: Dict) -> List[Dict]: """Process item for text classification""" content = item['content'] # Extract domain-based category url = item['url'] category = self._extract_category_from_url(url) # Split into paragraphs paragraphs = [p.strip() for p in content.split('\n\n') if len(p.strip()) > 50] results = [] for paragraph in paragraphs[:10]: # Limit per document results.append({ 'text': paragraph, 'category': category, 'source_url': url }) return results def _process_ner(self, item: Dict) -> List[Dict]: """Process item for Named Entity Recognition""" content = item['content'] if HAS_NLTK: try: sentences = sent_tokenize(content) except: sentences = content.split('. ') else: sentences = content.split('. ') results = [] for sentence in sentences[:20]: # Limit per document sentence = sentence.strip() if len(sentence) < 20: continue entities = [] if self.ner_model: try: ner_results = self.ner_model(sentence) for entity in ner_results: entities.append({ 'text': entity['word'], 'label': entity['entity_group'], 'confidence': entity['score'] }) except Exception as e: logger.debug(f"NER failed: {e}") # Fallback: simple pattern matching if not entities: entities = self._simple_ner(sentence) if entities: results.append({ 'text': sentence, 'entities': entities, 'source_url': item['url'] }) return results def _process_qa(self, item: Dict) -> List[Dict]: """Process item for Question Answering""" content = item['content'] # Generate simple Q&A pairs based on content results = [] # Look for FAQ-style patterns qa_patterns = [ (r'Q:\s*(.+?)\s*A:\s*(.+?)(?=Q:|$)', 'qa'), (r'Question:\s*(.+?)\s*Answer:\s*(.+?)(?=Question:|$)', 'qa'), (r'(.+\?)\s*(.+?)(?=.+\?|$)', 'simple') ] for pattern, style in qa_patterns: matches = re.findall(pattern, content, re.DOTALL | re.IGNORECASE) for match in matches[:10]: # Limit per document if len(match) == 2: question = match[0].strip() answer = match[1].strip() if len(question) > 10 and len(answer) > 10: results.append({ 'context': content[:500], # First 500 chars as context 'question': question, 'answer': answer, 'source_url': item['url'] }) return results def _process_summarization(self, item: Dict) -> List[Dict]: """Process item for summarization""" content = item['content'] # Split into chunks for summarization chunk_size = 1000 chunks = [content[i:i + chunk_size] for i in range(0, len(content), chunk_size)] results = [] for chunk in chunks[:5]: # Limit per document if len(chunk) < 100: continue summary = "" if self.summarizer and len(chunk) > 100: try: summary_result = self.summarizer(chunk, max_length=100, min_length=30) summary = summary_result[0]['summary_text'] except Exception as e: logger.debug(f"Summarization failed: {e}") # Fallback: extractive summary if not summary: summary = self._extractive_summary(chunk) if summary: results.append({ 'text': chunk, 'summary': summary, 'source_url': item['url'] }) return results def _process_translation(self, item: Dict) -> List[Dict]: """Process item for translation (placeholder)""" # This would require actual translation models # For now, return empty to avoid errors return [] def _process_generic(self, item: Dict) -> List[Dict]: """Generic processing for unknown templates""" content = item['content'] # Split into paragraphs paragraphs = [p.strip() for p in content.split('\n\n') if len(p.strip()) > 50] results = [] for paragraph in paragraphs[:10]: results.append({ 'text': paragraph, 'source_url': item['url'] }) return results def export_dataset(self, format_type: str) -> Tuple[str, str]: """Export processed dataset""" if not self.processed_data: return "āŒ No processed data available", "" try: if format_type == "JSON": data = json.dumps(self.processed_data, indent=2) filename = f"dataset_{int(time.time())}.json" elif format_type == "CSV": df = pd.DataFrame(self.processed_data) data = df.to_csv(index=False) filename = f"dataset_{int(time.time())}.csv" elif format_type == "HuggingFace Dataset": # Format for HuggingFace datasets hf_data = { "data": self.processed_data, "info": { "description": "AI Dataset Studio generated dataset", "created_at": datetime.now().isoformat(), "size": len(self.processed_data) } } data = json.dumps(hf_data, indent=2) filename = f"hf_dataset_{int(time.time())}.json" elif format_type == "JSONL": lines = [json.dumps(item) for item in self.processed_data] data = '\n'.join(lines) filename = f"dataset_{int(time.time())}.jsonl" else: return "āŒ Unsupported format", "" # Save to temporary file for download temp_path = f"/tmp/{filename}" with open(temp_path, 'w', encoding='utf-8') as f: f.write(data) status = f"āœ… Dataset exported successfully!\n" status += f"šŸ“Š Records: {len(self.processed_data)}\n" status += f"šŸ“ Format: {format_type}\n" status += f"šŸ“„ Size: {len(data):,} characters" return status, temp_path except Exception as e: logger.error(f"Export failed: {e}") return f"āŒ Export failed: {str(e)}", "" # Helper methods def _is_valid_url(self, url: str) -> bool: """Validate URL format""" try: result = urlparse(url) return all([result.scheme, result.netloc]) except: return False def _extract_title(self, soup: BeautifulSoup) -> str: """Extract title from HTML""" title_tag = soup.find('title') if title_tag: return title_tag.get_text().strip() h1_tag = soup.find('h1') if h1_tag: return h1_tag.get_text().strip() return "Untitled" def _extract_content(self, soup: BeautifulSoup) -> str: """Extract main content from HTML""" # Remove script and style elements for script in soup(["script", "style", "nav", "footer", "header"]): script.decompose() # Try to find main content main_content = soup.find('main') or soup.find('article') or soup.find('div', class_=re.compile(r'content|main|article')) if main_content: text = main_content.get_text() else: text = soup.get_text() # Clean text lines = (line.strip() for line in text.splitlines()) chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) text = ' '.join(chunk for chunk in chunks if chunk) return text def _keyword_sentiment(self, text: str) -> str: """Simple keyword-based sentiment analysis""" positive_words = ['good', 'great', 'excellent', 'amazing', 'wonderful', 'fantastic', 'love', 'like'] negative_words = ['bad', 'terrible', 'awful', 'hate', 'dislike', 'horrible', 'worst'] text_lower = text.lower() pos_count = sum(1 for word in positive_words if word in text_lower) neg_count = sum(1 for word in negative_words if word in text_lower) if pos_count > neg_count: return 'positive' elif neg_count > pos_count: return 'negative' else: return 'neutral' def _extract_category_from_url(self, url: str) -> str: """Extract category based on URL domain/path""" domain = urlparse(url).netloc.lower() if any(news in domain for news in ['cnn', 'bbc', 'reuters', 'news']): return 'news' elif any(tech in domain for tech in ['techcrunch', 'wired', 'tech']): return 'technology' elif any(biz in domain for biz in ['bloomberg', 'forbes', 'business']): return 'business' elif any(sport in domain for sport in ['espn', 'sport']): return 'sports' else: return 'general' def _simple_ner(self, text: str) -> List[Dict]: """Simple pattern-based NER""" entities = [] # Capitalized words (potential names/places) cap_words = re.findall(r'\b[A-Z][a-z]+(?:\s+[A-Z][a-z]+)*\b', text) for word in cap_words: if len(word) > 2: entities.append({ 'text': word, 'label': 'MISC', 'confidence': 0.5 }) return entities[:5] # Limit results def _extractive_summary(self, text: str) -> str: """Simple extractive summarization""" sentences = text.split('. ') if len(sentences) <= 2: return text # Take first and last sentences summary = f"{sentences[0]}. {sentences[-1]}" return summary def create_modern_interface(): """Create the modern Gradio interface""" logger.info("šŸŽØ Creating modern interface...") # Initialize the studio studio = DatasetStudio() # Custom CSS for modern look custom_css = """ .gradio-container { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; } .main-header { background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; padding: 2rem; border-radius: 10px; margin-bottom: 2rem; text-align: center; } .step-header { background: linear-gradient(90deg, #4facfe 0%, #00f2fe 100%); color: white; padding: 1rem; border-radius: 8px; margin: 1rem 0; font-weight: bold; } .template-card { border: 2px solid #e1e5e9; border-radius: 10px; padding: 1rem; margin: 0.5rem; transition: all 0.3s ease; } .template-card:hover { border-color: #4facfe; box-shadow: 0 4px 12px rgba(79, 172, 254, 0.3); } .status-success { background-color: #d4edda; border-color: #c3e6cb; color: #155724; padding: 1rem; border-radius: 5px; border-left: 4px solid #28a745; } .status-error { background-color: #f8d7da; border-color: #f5c6cb; color: #721c24; padding: 1rem; border-radius: 5px; border-left: 4px solid #dc3545; } """ with gr.Blocks(css=custom_css, title="šŸš€ AI Dataset Studio", theme=gr.themes.Soft()) as interface: # Main header gr.HTML("""

šŸš€ AI Dataset Studio

Create high-quality training datasets with AI-powered source discovery

🧠 Powered by Perplexity AI • šŸ¤– Advanced NLP • šŸ“Š Professional Export

""") with gr.Tabs() as tabs: # Tab 1: Project Setup with gr.TabItem("1ļøāƒ£ Project Setup", id=0): gr.HTML('
šŸ“‹ Step 1: Create Your Dataset Project
') with gr.Row(): with gr.Column(scale=2): project_name = gr.Textbox( label="šŸ·ļø Project Name", placeholder="e.g., Customer Review Sentiment Analysis", info="Give your dataset project a descriptive name" ) project_description = gr.Textbox( label="šŸ“ Project Description", lines=3, placeholder="Describe what kind of dataset you want to create...", info="This will be used by AI to discover relevant sources" ) with gr.Column(scale=1): # Template selection template_choices = list(DATASET_TEMPLATES.keys()) template_labels = [DATASET_TEMPLATES[t]["name"] for t in template_choices] template_selector = gr.Dropdown( choices=list(zip(template_labels, template_choices)), label="šŸ“Š Dataset Template", value=(template_labels[0], template_choices[0]), info="Choose the type of ML task" ) # Template info template_info = gr.Markdown("Select a template to see details") create_project_btn = gr.Button("šŸŽÆ Create Project", variant="primary", size="lg") project_status = gr.Textbox(label="šŸ“Š Project Status", interactive=False) # Update template info when selection changes def update_template_info(template_choice): if template_choice and len(template_choice) > 1: template_key = template_choice[1] template = DATASET_TEMPLATES.get(template_key, {}) info = f"**{template.get('name', '')}**\n\n" info += f"šŸ“– {template.get('description', '')}\n\n" info += f"šŸ·ļø **Fields:** {', '.join(template.get('fields', []))}\n\n" info += f"šŸ’” **Example:** `{template.get('example', {})}`" return info return "Select a template to see details" template_selector.change( fn=update_template_info, inputs=[template_selector], outputs=[template_info] ) # Tab 2: AI Source Discovery with gr.TabItem("2ļøāƒ£ AI Source Discovery", id=1): gr.HTML('
🧠 Step 2: Discover Sources with Perplexity AI
') if HAS_PERPLEXITY: gr.Markdown(""" ✨ **AI-Powered Source Discovery** - Let Perplexity AI find the best sources for your dataset! Just describe your project and AI will discover relevant, high-quality sources automatically. """) with gr.Row(): with gr.Column(): ai_search_description = gr.Textbox( label="šŸŽÆ Project Description for AI Search", lines=3, placeholder="e.g., I need product reviews for sentiment analysis training data...", info="Describe what sources you need - be specific!" ) with gr.Row(): search_type = gr.Dropdown( choices=["general", "academic", "news", "technical"], value="general", label="šŸ” Search Type" ) max_sources = gr.Slider( minimum=5, maximum=50, value=20, step=5, label="šŸ“Š Max Sources" ) with gr.Row(): include_academic = gr.Checkbox(label="šŸ“š Include Academic Sources", value=True) include_news = gr.Checkbox(label="šŸ“° Include News Sources", value=True) discover_btn = gr.Button("🧠 Discover Sources with AI", variant="primary", size="lg") ai_search_status = gr.Textbox(label="šŸ” Discovery Status", interactive=False) discovered_sources = gr.Code(label="šŸ“‹ Discovered Sources", language="json", interactive=False) # Use discovered sources button use_ai_sources_btn = gr.Button("āœ… Use These Sources", variant="secondary") else: gr.Markdown(""" āš ļø **Perplexity AI Not Available** To enable AI-powered source discovery, set your `PERPLEXITY_API_KEY` environment variable. For now, you can manually enter URLs below. """) discovered_sources = gr.Code(value="[]", visible=False) gr.HTML('
šŸ“ Manual URL Entry
') urls_input = gr.Textbox( label="šŸ”— URLs to Scrape", lines=10, placeholder="https://example.com/article1\nhttps://example.com/article2\n...", info="Enter one URL per line" ) scrape_btn = gr.Button("šŸ•·ļø Start Scraping", variant="primary", size="lg") scrape_status = gr.Textbox(label="šŸ“Š Scraping Status", interactive=False) scraped_preview = gr.Code(label="šŸ‘€ Scraped Data Preview", language="json", interactive=False) # Tab 3: Data Processing with gr.TabItem("3ļøāƒ£ Data Processing", id=2): gr.HTML('
āš™ļø Step 3: Process Data with AI
') processing_template = gr.Dropdown( choices=list(zip(template_labels, template_choices)), label="šŸ“Š Processing Template", value=(template_labels[0], template_choices[0]), info="How should the data be processed?" ) process_btn = gr.Button("āš™ļø Process Data", variant="primary", size="lg") process_status = gr.Textbox(label="šŸ“Š Processing Status", interactive=False) processed_preview = gr.Code(label="šŸŽÆ Processed Data Preview", language="json", interactive=False) # Tab 4: Export Dataset with gr.TabItem("4ļøāƒ£ Export Dataset", id=3): gr.HTML('
šŸ“¦ Step 4: Export Your Dataset
') export_format = gr.Dropdown( choices=["JSON", "CSV", "HuggingFace Dataset", "JSONL"], value="JSON", label="šŸ“„ Export Format", info="Choose format for your dataset" ) export_btn = gr.Button("šŸ“¦ Export Dataset", variant="primary", size="lg") export_status = gr.Textbox(label="šŸ“Š Export Status", interactive=False) download_file = gr.File(label="šŸ’¾ Download Dataset", interactive=False) # Event handlers create_project_btn.click( fn=lambda name, desc, template: studio.create_project(name, template[1] if template else "", desc), inputs=[project_name, project_description, template_selector], outputs=[project_status] ) if HAS_PERPLEXITY: discover_btn.click( fn=studio.discover_sources_with_ai, inputs=[ai_search_description, max_sources, search_type, include_academic, include_news], outputs=[ai_search_status, discovered_sources] ) use_ai_sources_btn.click( fn=lambda sources_json: '\n'.join(studio.extract_urls_from_sources(sources_json)), inputs=[discovered_sources], outputs=[urls_input] ) scrape_btn.click( fn=studio.scrape_urls, inputs=[urls_input], outputs=[scrape_status, scraped_preview] ) process_btn.click( fn=lambda template: studio.process_data(template[1] if template else ""), inputs=[processing_template], outputs=[process_status, processed_preview] ) export_btn.click( fn=studio.export_dataset, inputs=[export_format], outputs=[export_status, download_file] ) logger.info("āœ… Interface created successfully") return interface # Application startup try: logger.info("šŸš€ Starting AI Dataset Studio...") logger.info("šŸ“Š Features: āœ… AI Models | āœ… Advanced NLP | āœ… HuggingFace Integration") interface = create_modern_interface() logger.info("āœ… Application startup successful") if __name__ == "__main__": interface.launch( server_name="0.0.0.0", server_port=7860, share=False, show_error=True ) except Exception as e: logger.error(f"āŒ Failed to launch application: {e}") logger.error(f"Traceback: {traceback.format_exc()}") sys.exit(1)