""" šŸ“š Perplexity AI Integration Examples Demonstrate how to effectively use AI-powered source discovery for dataset creation """ import os import json import time from typing import List, Dict from datetime import datetime # Import our Perplexity client try: from perplexity_client import PerplexityClient, SearchType, SourceResult PERPLEXITY_AVAILABLE = True except ImportError: print("āš ļø Perplexity client not available. Make sure perplexity_client.py is in the same directory.") PERPLEXITY_AVAILABLE = False def example_sentiment_analysis_sources(): """ šŸ“Š Example: Find sources for sentiment analysis dataset This example shows how to discover diverse sources for sentiment analysis, including product reviews, social media, and news content. """ print("šŸ“Š Example: Sentiment Analysis Source Discovery") print("=" * 60) if not PERPLEXITY_AVAILABLE: print("āŒ Perplexity client not available") return client = PerplexityClient() if not client._validate_api_key(): print("āŒ Please set PERPLEXITY_API_KEY environment variable") return # Different types of sentiment analysis projects projects = [ { "description": "Product reviews from e-commerce sites for sentiment classification of customer feedback", "search_type": SearchType.GENERAL, "focus": "E-commerce reviews" }, { "description": "Movie and entertainment reviews for sentiment analysis training with detailed ratings", "search_type": SearchType.GENERAL, "focus": "Entertainment reviews" }, { "description": "Social media posts and comments about brands for real-time sentiment monitoring", "search_type": SearchType.SOCIAL, "focus": "Social media sentiment" }, { "description": "News articles with opinion content for political sentiment analysis research", "search_type": SearchType.NEWS, "focus": "News opinion analysis" } ] all_results = [] for i, project in enumerate(projects, 1): print(f"\nšŸ” Project {i}: {project['focus']}") print("-" * 40) try: results = client.discover_sources( project_description=project["description"], search_type=project["search_type"], max_sources=8, include_academic=False, # Focus on practical sources include_news=True ) print(f"āœ… Found {len(results.sources)} sources in {results.search_time:.1f}s") # Show top 3 sources for j, source in enumerate(results.sources[:3], 1): print(f" {j}. {source.title}") print(f" URL: {source.url}") print(f" Type: {source.source_type} | Score: {source.relevance_score:.1f}/10") print(f" Description: {source.description[:100]}...") print() all_results.extend(results.sources) if results.suggestions: print(f"šŸ’” Suggestions: {', '.join(results.suggestions[:3])}") except Exception as e: print(f"āŒ Error: {e}") # Respectful delay between requests time.sleep(1) # Summary print(f"\nšŸ“Š SUMMARY") print("-" * 40) print(f"Total sources discovered: {len(all_results)}") # Analyze source types source_types = {} for source in all_results: source_types[source.source_type] = source_types.get(source.source_type, 0) + 1 print("Source type distribution:") for stype, count in sorted(source_types.items()): print(f" {stype}: {count} sources") # Top domains domains = {} for source in all_results: domains[source.domain] = domains.get(source.domain, 0) + 1 print("\nTop domains:") for domain, count in sorted(domains.items(), key=lambda x: x[1], reverse=True)[:5]: print(f" {domain}: {count} sources") return all_results def example_text_classification_sources(): """ šŸ“‚ Example: Find sources for text classification dataset This example demonstrates finding well-categorized content for multi-class text classification training. """ print("\nšŸ“‚ Example: Text Classification Source Discovery") print("=" * 60) if not PERPLEXITY_AVAILABLE: print("āŒ Perplexity client not available") return client = PerplexityClient() # Multi-domain classification project project_description = """ Find diverse news articles and content with clear topical categories for training a multi-class text classifier. Need sources covering politics, technology, sports, business, entertainment, health, and science topics with consistent categorization. """ try: results = client.discover_sources( project_description=project_description, search_type=SearchType.NEWS, max_sources=15, include_academic=True, # Include academic sources for science topics include_news=True ) print(f"āœ… Found {len(results.sources)} sources") # Categorize sources by likely content type categorized = { "news": [], "academic": [], "business": [], "technology": [], "other": [] } for source in results.sources: domain = source.domain.lower() if any(news in domain for news in ['reuters', 'bbc', 'cnn', 'news']): categorized["news"].append(source) elif any(academic in domain for academic in ['arxiv', 'pubmed', 'scholar', 'edu']): categorized["academic"].append(source) elif any(biz in domain for biz in ['bloomberg', 'forbes', 'business', 'financial']): categorized["business"].append(source) elif any(tech in domain for tech in ['techcrunch', 'wired', 'tech', 'digital']): categorized["technology"].append(source) else: categorized["other"].append(source) print("\nšŸ“‹ Sources by Category:") for category, sources in categorized.items(): if sources: print(f"\n{category.upper()} ({len(sources)} sources):") for source in sources[:2]: # Show top 2 per category print(f" • {source.title}") print(f" {source.url}") print(f" Score: {source.relevance_score:.1f}/10") # Export for use export_data = client.export_sources(results, "json") # Save to file filename = f"text_classification_sources_{int(time.time())}.json" with open(filename, 'w', encoding='utf-8') as f: f.write(export_data) print(f"\nšŸ“„ Sources exported to: {filename}") return results.sources except Exception as e: print(f"āŒ Error: {e}") return [] def example_academic_research_sources(): """ šŸŽ“ Example: Find academic sources for research dataset This example shows how to discover high-quality academic sources for research-focused datasets. """ print("\nšŸŽ“ Example: Academic Research Source Discovery") print("=" * 60) if not PERPLEXITY_AVAILABLE: print("āŒ Perplexity client not available") return client = PerplexityClient() # Research-focused projects research_topics = [ { "description": "Recent machine learning research papers on transformer architectures and attention mechanisms for NLP survey dataset", "domain_focus": "AI/ML research" }, { "description": "Climate change research papers and reports for environmental science text summarization training", "domain_focus": "Climate science" }, { "description": "Medical research papers on drug discovery and pharmaceutical research for biomedical NER training", "domain_focus": "Medical research" } ] all_academic_sources = [] for topic in research_topics: print(f"\nšŸ”¬ Research Topic: {topic['domain_focus']}") print("-" * 40) try: results = client.discover_sources( project_description=topic["description"], search_type=SearchType.ACADEMIC, max_sources=10, include_academic=True, include_news=False # Focus on academic sources only ) print(f"āœ… Found {len(results.sources)} academic sources") # Filter for high-quality academic sources high_quality = [s for s in results.sources if s.relevance_score >= 7.0] print(f"šŸ“š High-quality sources (score ≄ 7.0): {len(high_quality)}") for source in high_quality[:3]: print(f"\n šŸ“„ {source.title}") print(f" URL: {source.url}") print(f" Domain: {source.domain}") print(f" Score: {source.relevance_score:.1f}/10") print(f" Type: {source.source_type}") all_academic_sources.extend(high_quality) except Exception as e: print(f"āŒ Error: {e}") time.sleep(1) # Respectful delay # Analysis print(f"\nšŸ“Š ACADEMIC SOURCES ANALYSIS") print("-" * 40) print(f"Total high-quality academic sources: {len(all_academic_sources)}") # Domain analysis academic_domains = {} for source in all_academic_sources: domain = source.domain academic_domains[domain] = academic_domains.get(domain, 0) + 1 print("\nTop academic domains:") for domain, count in sorted(academic_domains.items(), key=lambda x: x[1], reverse=True)[:5]: print(f" {domain}: {count} papers") # Quality distribution scores = [s.relevance_score for s in all_academic_sources] if scores: avg_score = sum(scores) / len(scores) print(f"\nAverage quality score: {avg_score:.1f}/10") print(f"Score range: {min(scores):.1f} - {max(scores):.1f}") return all_academic_sources def example_custom_search_strategies(): """ šŸŽÆ Example: Custom search strategies for specific needs This example demonstrates advanced techniques for finding very specific types of content. """ print("\nšŸŽÆ Example: Custom Search Strategies") print("=" * 60) if not PERPLEXITY_AVAILABLE: print("āŒ Perplexity client not available") return client = PerplexityClient() # Strategy 1: Domain-specific search print("\nšŸ” Strategy 1: Domain-specific Financial Content") print("-" * 50) try: financial_results = client.get_domain_sources( domain="bloomberg.com", topic="quarterly earnings reports and financial analysis", max_sources=5 ) print(f"āœ… Found {len(financial_results.sources)} financial sources") for source in financial_results.sources[:2]: print(f" • {source.title}") print(f" Score: {source.relevance_score:.1f}/10") except Exception as e: print(f"āŒ Error: {e}") # Strategy 2: Keyword-based search print("\nšŸ” Strategy 2: Keyword-based Technical Content") print("-" * 50) try: tech_keywords = ["API documentation", "software tutorials", "programming guides", "technical specifications"] tech_results = client.search_with_keywords( keywords=tech_keywords, search_type=SearchType.TECHNICAL ) print(f"āœ… Found {len(tech_results.sources)} technical sources") for source in tech_results.sources[:2]: print(f" • {source.title}") print(f" Type: {source.source_type}") except Exception as e: print(f"āŒ Error: {e}") # Strategy 3: Multi-format search print("\nšŸ” Strategy 3: Multi-format Content Discovery") print("-" * 50) multiformat_description = """ Find diverse content formats including FAQ pages, interview transcripts, tutorial content, and documentation for question-answering dataset creation. Need sources with clear question-answer patterns and structured information. """ try: qa_results = client.discover_sources( project_description=multiformat_description, search_type=SearchType.GENERAL, max_sources=12 ) print(f"āœ… Found {len(qa_results.sources)} Q&A sources") # Categorize by content format formats = { "faq": [], "tutorial": [], "documentation": [], "interview": [], "other": [] } for source in qa_results.sources: title_lower = source.title.lower() url_lower = source.url.lower() if any(faq in title_lower or faq in url_lower for faq in ['faq', 'questions', 'help']): formats["faq"].append(source) elif any(tut in title_lower for tut in ['tutorial', 'guide', 'how to']): formats["tutorial"].append(source) elif any(doc in title_lower or doc in url_lower for doc in ['docs', 'documentation', 'manual']): formats["documentation"].append(source) elif any(int in title_lower for int in ['interview', 'q&a', 'conversation']): formats["interview"].append(source) else: formats["other"].append(source) for format_type, sources in formats.items(): if sources: print(f"\n {format_type.upper()}: {len(sources)} sources") if sources: best = max(sources, key=lambda x: x.relevance_score) print(f" Best: {best.title} (Score: {best.relevance_score:.1f})") except Exception as e: print(f"āŒ Error: {e}") def example_quality_assessment(): """ āœ… Example: Quality assessment and source validation This example shows how to evaluate and filter sources for maximum dataset quality. """ print("\nāœ… Example: Source Quality Assessment") print("=" * 60) if not PERPLEXITY_AVAILABLE: print("āŒ Perplexity client not available") return client = PerplexityClient() # Broad search to get diverse quality levels description = "Content for machine learning training including text classification and sentiment analysis" try: results = client.discover_sources( project_description=description, search_type=SearchType.GENERAL, max_sources=20 ) print(f"āœ… Found {len(results.sources)} total sources") # Quality analysis print(f"\nšŸ“Š QUALITY DISTRIBUTION") print("-" * 40) quality_tiers = { "excellent": [s for s in results.sources if s.relevance_score >= 8.0], "good": [s for s in results.sources if 6.0 <= s.relevance_score < 8.0], "acceptable": [s for s in results.sources if 4.0 <= s.relevance_score < 6.0], "poor": [s for s in results.sources if s.relevance_score < 4.0] } for tier, sources in quality_tiers.items(): print(f"{tier.upper()}: {len(sources)} sources") if sources: avg_score = sum(s.relevance_score for s in sources) / len(sources) print(f" Average score: {avg_score:.1f}") print(f" Example: {sources[0].title[:50]}...") # Validate top sources print(f"\nšŸ” VALIDATING TOP SOURCES") print("-" * 40) top_sources = [s for s in results.sources if s.relevance_score >= 7.0] validated_sources = client.validate_sources(top_sources) print(f"Sources passed validation: {len(validated_sources)}/{len(top_sources)}") # Show validation results for source in validated_sources[:3]: print(f"\nāœ… VALIDATED: {source.title}") print(f" URL: {source.url}") print(f" Domain: {source.domain}") print(f" Type: {source.source_type}") print(f" Score: {source.relevance_score:.1f}/10") print(f" Description: {source.description[:100]}...") # Export validated sources if validated_sources: export_data = { "search_query": description, "total_found": len(results.sources), "validated_count": len(validated_sources), "quality_threshold": 7.0, "sources": [ { "url": s.url, "title": s.title, "domain": s.domain, "type": s.source_type, "score": s.relevance_score, "description": s.description } for s in validated_sources ] } filename = f"validated_sources_{int(time.time())}.json" with open(filename, 'w', encoding='utf-8') as f: json.dump(export_data, f, indent=2) print(f"\nšŸ“„ Validated sources exported to: {filename}") return validated_sources except Exception as e: print(f"āŒ Error: {e}") return [] def example_batch_processing(): """ ⚔ Example: Batch processing for large dataset projects This example demonstrates efficient batch discovery for large-scale dataset creation projects. """ print("\n⚔ Example: Batch Processing for Large Projects") print("=" * 60) if not PERPLEXITY_AVAILABLE: print("āŒ Perplexity client not available") return client = PerplexityClient() # Define multiple related searches for comprehensive coverage batch_searches = [ { "name": "E-commerce Reviews", "description": "Product reviews from online stores for sentiment analysis", "search_type": SearchType.GENERAL, "max_sources": 8 }, { "name": "Social Media Content", "description": "Social media posts and comments for sentiment classification", "search_type": SearchType.SOCIAL, "max_sources": 8 }, { "name": "News Opinion", "description": "News articles with editorial content for opinion mining", "search_type": SearchType.NEWS, "max_sources": 8 }, { "name": "Forum Discussions", "description": "Forum posts and community discussions for sentiment analysis", "search_type": SearchType.GENERAL, "max_sources": 6 } ] all_batch_results = [] total_start_time = time.time() print(f"šŸš€ Processing {len(batch_searches)} batch searches...") for i, search in enumerate(batch_searches, 1): print(f"\nšŸ“ Batch {i}/{len(batch_searches)}: {search['name']}") print("-" * 40) search_start = time.time() try: results = client.discover_sources( project_description=search["description"], search_type=search["search_type"], max_sources=search["max_sources"] ) search_time = time.time() - search_start print(f"āœ… Found {len(results.sources)} sources in {search_time:.1f}s") # Add batch metadata for source in results.sources: source.batch_name = search["name"] source.batch_index = i all_batch_results.extend(results.sources) # Show top result if results.sources: best = max(results.sources, key=lambda x: x.relevance_score) print(f" Top result: {best.title} (Score: {best.relevance_score:.1f})") except Exception as e: print(f"āŒ Batch {i} failed: {e}") # Rate limiting between batches time.sleep(1.5) total_time = time.time() - total_start_time # Batch results analysis print(f"\nšŸ“Š BATCH PROCESSING RESULTS") print("-" * 40) print(f"Total sources discovered: {len(all_batch_results)}") print(f"Total processing time: {total_time:.1f} seconds") print(f"Average per batch: {total_time/len(batch_searches):.1f} seconds") # Quality distribution across batches batch_stats = {} for source in all_batch_results: batch_name = getattr(source, 'batch_name', 'unknown') if batch_name not in batch_stats: batch_stats[batch_name] = { 'count': 0, 'avg_score': 0, 'scores': [] } batch_stats[batch_name]['count'] += 1 batch_stats[batch_name]['scores'].append(source.relevance_score) # Calculate averages for batch_name, stats in batch_stats.items(): if stats['scores']: stats['avg_score'] = sum(stats['scores']) / len(stats['scores']) print(f"\nBatch quality comparison:") for batch_name, stats in sorted(batch_stats.items(), key=lambda x: x[1]['avg_score'], reverse=True): print(f" {batch_name}: {stats['count']} sources, avg score {stats['avg_score']:.1f}") # Export comprehensive results batch_export = { "project_name": "Large Scale Sentiment Analysis Dataset", "batch_processing_date": datetime.now().isoformat(), "total_sources": len(all_batch_results), "processing_time_seconds": total_time, "batches": len(batch_searches), "batch_statistics": batch_stats, "sources": [ { "url": s.url, "title": s.title, "domain": s.domain, "type": s.source_type, "score": s.relevance_score, "batch": getattr(s, 'batch_name', 'unknown'), "description": s.description } for s in all_batch_results ] } filename = f"batch_results_{int(time.time())}.json" with open(filename, 'w', encoding='utf-8') as f: json.dump(batch_export, f, indent=2) print(f"\nšŸ“„ Batch results exported to: {filename}") print(f"šŸ’” Use these {len(all_batch_results)} sources to create a comprehensive sentiment analysis dataset!") return all_batch_results def main(): """ šŸš€ Run all Perplexity AI examples This function demonstrates the full range of capabilities for AI-powered source discovery. """ print("šŸš€ Perplexity AI Integration - Complete Examples") print("=" * 70) print("These examples show how to use AI-powered source discovery") print("to create high-quality datasets efficiently.\n") if not PERPLEXITY_AVAILABLE: print("āŒ Cannot run examples - perplexity_client.py not found") print("Please ensure the perplexity_client.py file is in the same directory.") return if not os.getenv('PERPLEXITY_API_KEY'): print("āŒ Cannot run examples - PERPLEXITY_API_KEY not set") print("Please set your Perplexity API key as an environment variable:") print("export PERPLEXITY_API_KEY='your_api_key_here'") return print("āœ… Perplexity AI client available and configured") print("šŸŽÆ Running comprehensive examples...\n") try: # Run all examples sentiment_sources = example_sentiment_analysis_sources() time.sleep(2) # Respectful delay classification_sources = example_text_classification_sources() time.sleep(2) academic_sources = example_academic_research_sources() time.sleep(2) example_custom_search_strategies() time.sleep(2) validated_sources = example_quality_assessment() time.sleep(2) batch_sources = example_batch_processing() # Final summary print(f"\nšŸŽ‰ EXAMPLES COMPLETE!") print("=" * 70) print("Summary of discovered sources:") total_sources = 0 if sentiment_sources: total_sources += len(sentiment_sources) print(f" šŸ“Š Sentiment Analysis: {len(sentiment_sources)} sources") if classification_sources: total_sources += len(classification_sources) print(f" šŸ“‚ Text Classification: {len(classification_sources)} sources") if academic_sources: total_sources += len(academic_sources) print(f" šŸŽ“ Academic Research: {len(academic_sources)} sources") if validated_sources: print(f" āœ… Validated High-Quality: {len(validated_sources)} sources") if batch_sources: print(f" ⚔ Batch Processing: {len(batch_sources)} sources") print(f"\nšŸŽÆ Total unique sources discovered: {total_sources}") print("šŸ“„ Check the generated JSON files for detailed source information") print("\nšŸ’” Next steps:") print(" 1. Review the exported source files") print(" 2. Select the best sources for your specific use case") print(" 3. Use these sources in your AI Dataset Studio") print(" 4. Create amazing datasets with AI-powered discovery!") except Exception as e: print(f"āŒ Error running examples: {e}") import traceback traceback.print_exc() if __name__ == "__main__": main()