File size: 19,745 Bytes
a6a8479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e6af1e
 
a6a8479
 
 
 
 
 
 
 
 
 
 
1e6af1e
a6a8479
 
 
1e6af1e
a6a8479
 
1e6af1e
a6a8479
 
 
 
 
 
 
 
 
1e6af1e
a6a8479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e6af1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a88d850
1e6af1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a88d850
 
1e6af1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6a8479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e6af1e
a6a8479
 
 
 
 
 
 
a88d850
a6a8479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e6af1e
 
 
 
 
 
 
 
 
a88d850
 
1e6af1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a88d850
1e6af1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6a8479
1e6af1e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
import argparse
import os
from pathlib import Path

import logging
import re_matching

logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)

logging.basicConfig(
    level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
)

logger = logging.getLogger(__name__)

import librosa
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
from clap_wrapper import get_clap_audio_feature, get_clap_text_feature

from tools.sentence import extrac, is_japanese, is_chinese, seconds_to_ass_time, extract_text_from_file, remove_annotations,extract_and_convert
import re

import gradio as gr

import utils
from config import config

import torch
import commons
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import utils
from scipy.io.wavfile import write
from models import SynthesizerTrn
from text.symbols import symbols
import sys
import shutil

net_g = None

device = (
        "cuda:0"
        if torch.cuda.is_available()
        else (
            "mps"
            if sys.platform == "darwin" and torch.backends.mps.is_available()
            else "cpu"
        )
    )

BandList = {
        "PoppinParty":["香澄","有咲","たえ","りみ","沙綾"],
        "Afterglow":["蘭","モカ","ひまり","巴","つぐみ"],
        "HelloHappyWorld":["こころ","美咲","薫","花音","はぐみ"],
        "PastelPalettes":["彩","日菜","千聖","イヴ","麻弥"],
        "Roselia":["友希那","紗夜","リサ","燐子","あこ"],
        "RaiseASuilen":["レイヤ","ロック","ますき","チュチュ","パレオ"],
        "Morfonica":["ましろ","瑠唯","つくし","七深","透子"],
        "MyGo":["燈","愛音","そよ","立希","楽奈"],
        "AveMujica":["祥子","睦","海鈴","にゃむ","初華"],
        "圣翔音乐学园":["華戀","光","香子","雙葉","真晝","純那","克洛迪娜","真矢","奈奈"],
        "凛明馆女子学校":["珠緒","壘","文","悠悠子","一愛"],
        "弗隆提亚艺术学校":["艾露","艾露露","菈樂菲","司","靜羽"],
        "西克菲尔特音乐学院":["晶","未知留","八千代","栞","美帆"]
}

def get_net_g(model_path: str, device: str, hps):
    # 当前版本模型 net_g
    net_g = SynthesizerTrn(
        len(symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model,
    ).to(device)
    _ = net_g.eval()
    _ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
    return net_g


def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7):
    style_text = None if style_text == "" else style_text
    # 在此处实现当前版本的get_text
    norm_text, phone, tone, word2ph = clean_text(text, language_str)
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
    if hps.data.add_blank:
        phone = commons.intersperse(phone, 0)
        tone = commons.intersperse(tone, 0)
        language = commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2
        word2ph[0] += 1
    bert = get_bert(norm_text, word2ph, language_str, device, style_text, style_weight)
    del word2ph

    assert bert.shape[-1] == len(
        phone
    ), f"Bert seq len {bert.shape[-1]} != {len(phone)}"

    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)
    return bert, phone, tone, language

def infer(
    text,
    sdp_ratio,
    noise_scale,
    noise_scale_w,
    length_scale,
    sid,
    emotion,
    reference_audio=None,
    skip_start=False,
    skip_end=False,
    style_text=None,
    style_weight=0.7,
):
    language = "JP"
    if isinstance(reference_audio, np.ndarray):
        emo = get_clap_audio_feature(reference_audio, device)
    else:
        emo = get_clap_text_feature(emotion, device)
    emo = torch.squeeze(emo, dim=1)

    bert, phones, tones, lang_ids = get_text(
        text,
        language,
        hps,
        device,
        style_text=style_text,
        style_weight=style_weight,
    )
    if skip_start:
        phones = phones[3:]
        tones = tones[3:]
        lang_ids = lang_ids[3:]
        bert = bert[:, 3:]
    if skip_end:
        phones = phones[:-2]
        tones = tones[:-2]
        lang_ids = lang_ids[:-2]
        bert = bert[:, :-2]
    with torch.no_grad():
        x_tst = phones.to(device).unsqueeze(0)
        tones = tones.to(device).unsqueeze(0)
        lang_ids = lang_ids.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        emo = emo.to(device).unsqueeze(0)
        del phones
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
        audio = (
            net_g.infer(
                x_tst,
                x_tst_lengths,
                speakers,
                tones,
                lang_ids,
                bert,
                emo,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
            )[0][0, 0]
            .data.cpu()
            .float()
            .numpy()
        )
        del (
            x_tst,
            tones,
            lang_ids,
            bert,
            x_tst_lengths,
            speakers,
            emo,
        )  # , emo
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        return (hps.data.sampling_rate,gr.processing_utils.convert_to_16_bit_wav(audio))


def generate_audio_and_srt_for_group(group, outputPath, group_index, sampling_rate, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime):
    audio_fin = []
    ass_entries = []
    start_time = 0
    #speaker = random.choice(cara_list)
    ass_header = """[Script Info]
; 我没意见
Title: Audiobook
ScriptType: v4.00+
WrapStyle: 0
PlayResX: 640
PlayResY: 360
ScaledBorderAndShadow: yes
[V4+ Styles]
Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, OutlineColour, BackColour, Bold, Italic, Underline, StrikeOut, ScaleX, ScaleY, Spacing, Angle, BorderStyle, Outline, Shadow, Alignment, MarginL, MarginR, MarginV, Encoding
Style: Default,Arial,20,&H00FFFFFF,&H000000FF,&H00000000,&H00000000,0,0,0,0,100,100,0,0,1,1,1,2,10,10,10,1
[Events]
Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text
"""

    for sentence in group:
        try:
            print(sentence)
            FakeSpeaker = sentence.split("|")[0]
            print(FakeSpeaker)
            SpeakersList = re.split('\n', spealerList)
            if FakeSpeaker in list(hps.data.spk2id.keys()):
                speaker = FakeSpeaker
            for i in SpeakersList:
                if FakeSpeaker == i.split("|")[1]:
                    speaker = i.split("|")[0]
            if sentence != '\n':
                audio = infer_simple((remove_annotations(sentence.split("|")[-1]).replace(" ","")+"。").replace(",。","。").replace("。。","。"), sdp_ratio, noise_scale, noise_scale_w, length_scale,speaker)
                silence_frames = int(silenceTime * 44010) if is_chinese(sentence) else int(silenceTime * 44010)
                silence_data = np.zeros((silence_frames,), dtype=audio.dtype)
                audio_fin.append(audio)
                audio_fin.append(silence_data)

                duration = len(audio) / sampling_rate
                print(duration)
                end_time = start_time + duration + silenceTime
                ass_entries.append("Dialogue: 0,{},{},".format(seconds_to_ass_time(start_time), seconds_to_ass_time(end_time)) + "Default,,0,0,0,,{}".format(sentence.replace("|",":")))
                start_time = end_time
        except:
            pass

    wav_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.wav')
    ass_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.ass')

    write(wav_filename, sampling_rate, np.concatenate(audio_fin))

    with open(ass_filename, 'w', encoding='utf-8') as f:
        f.write(ass_header + '\n'.join(ass_entries))
    return (hps.data.sampling_rate, np.concatenate(audio_fin))


def infer_simple(
    text,
    sdp_ratio,
    noise_scale,
    noise_scale_w,
    length_scale,
    sid,
    emotion = '',
    reference_audio=None,
    skip_start=False,
    skip_end=False,
    style_text=None,
    style_weight=0.7,
):
    language = "JP"
    if isinstance(reference_audio, np.ndarray):
        emo = get_clap_audio_feature(reference_audio, device)
    else:
        emo = get_clap_text_feature(emotion, device)
    emo = torch.squeeze(emo, dim=1)

    bert, phones, tones, lang_ids = get_text(
        text,
        language,
        hps,
        device,
        style_text=style_text,
        style_weight=style_weight,
    )
    if skip_start:
        phones = phones[3:]
        tones = tones[3:]
        lang_ids = lang_ids[3:]
        bert = bert[:, 3:]
    if skip_end:
        phones = phones[:-2]
        tones = tones[:-2]
        lang_ids = lang_ids[:-2]
        bert = bert[:, :-2]
    with torch.no_grad():
        x_tst = phones.to(device).unsqueeze(0)
        tones = tones.to(device).unsqueeze(0)
        lang_ids = lang_ids.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        emo = emo.to(device).unsqueeze(0)
        del phones
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
        audio = (
            net_g.infer(
                x_tst,
                x_tst_lengths,
                speakers,
                tones,
                lang_ids,
                bert,
                emo,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
            )[0][0, 0]
            .data.cpu()
            .float()
            .numpy()
        )
        del (
            x_tst,
            tones,
            lang_ids,
            bert,
            x_tst_lengths,
            speakers,
            emo,
        )  # , emo
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
    return audio

def audiobook(inputFile, groupsize, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime,filepath,raw_text):
    directory_path = filepath if torch.cuda.is_available() else "books"
 
    if os.path.exists(directory_path):
        shutil.rmtree(directory_path)

    os.makedirs(directory_path)
    if inputFile:
        text = extract_text_from_file(inputFile.name)
    else:
        text = raw_text
    sentences = extrac(extract_and_convert(text))
    GROUP_SIZE = groupsize
    for i in range(0, len(sentences), GROUP_SIZE):
        group = sentences[i:i+GROUP_SIZE]
        if spealerList == "":
            spealerList = "无"
        result = generate_audio_and_srt_for_group(group,directory_path, i//GROUP_SIZE + 1, 44100, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime)
        if not torch.cuda.is_available():
            return result
    return result

def loadmodel(model):
    _ = net_g.eval()
    _ = utils.load_checkpoint(model, net_g, None, skip_optimizer=True)
    return "success"

if __name__ == "__main__":
    modelPaths = []
    for dirpath, dirnames, filenames in os.walk('Data/BangDream/models/'):
        for filename in filenames:
            modelPaths.append(os.path.join(dirpath, filename))
    hps = utils.get_hparams_from_file('Data/BangDream//config.json')
    net_g = get_net_g(
        model_path=modelPaths[-1], device=device, hps=hps
    )
    speaker_ids = hps.data.spk2id
    speakers = list(speaker_ids.keys())
    with gr.Blocks() as app:
        for band in BandList:
            with gr.TabItem(band):
                for name in BandList[band]:
                    with gr.TabItem(name):
                        with gr.Row():
                            with gr.Column():
                                with gr.Row():
                                    gr.Markdown(
                                        '<div align="center">'
                                        f'<img style="width:auto;height:400px;" src="https://mahiruoshi-bangdream-bert-vits2.hf.space/file/image/{name}.png">' 
                                        '</div>'
                                    )
                                length_scale = gr.Slider(
                                        minimum=0.1, maximum=2, value=1, step=0.01, label="语速调节"
                                    )
                                emotion = gr.Textbox(
                                        label="情感标注文本",
                                        value = 'なんではるひかげやったの?!!'
                                    )
                                style_weight = gr.Slider(
                                        minimum=0.1, maximum=2, value=1, step=0.01, label="感情比重"
                                    )
                                with gr.Accordion(label="参数设定", open=False):
                                    sdp_ratio = gr.Slider(
                                    minimum=0, maximum=1, value=0.5, step=0.01, label="SDP/DP混合比"
                                    )
                                    noise_scale = gr.Slider(
                                        minimum=0.1, maximum=2, value=0.6, step=0.01, label="感情调节"
                                    )
                                    noise_scale_w = gr.Slider(
                                        minimum=0.1, maximum=2, value=0.8, step=0.01, label="音素长度"
                                    )
                                    speaker = gr.Dropdown(
                                        choices=speakers, value=name, label="说话人"
                                    )
                                    skip_start = gr.Checkbox(label="跳过开头")
                                    skip_end = gr.Checkbox(label="跳过结尾")
                                with gr.Accordion(label="切换模型", open=False):
                                    modelstrs = gr.Dropdown(label = "模型", choices = modelPaths, value = modelPaths[0], type = "value")
                                    btnMod = gr.Button("载入模型")
                                    statusa = gr.TextArea()
                                    btnMod.click(loadmodel, inputs=[modelstrs], outputs = [statusa])
                            with gr.Column():
                                text = gr.TextArea(
                                    label="输入纯日语",
                                    placeholder="输入纯日语",
                                    value="なんではるひかげやったの?!!",
                                )
                                reference_audio = gr.Audio(label="情感参考音频)", type="filepath")
                                btn = gr.Button("点击生成", variant="primary")
                                audio_output = gr.Audio(label="Output Audio")
                    btn.click(
                        infer,
                        inputs=[
                            text,
                            sdp_ratio,
                            noise_scale,
                            noise_scale_w,
                            length_scale,
                            speaker,
                            emotion,
                            reference_audio,
                            skip_start,
                            skip_end,
                            emotion,
                            style_weight,
                        ],
                        outputs=[audio_output],
                    )
        with gr.Tab('拓展功能'):
            with gr.Row():
                with gr.Column():
                    gr.Markdown(
                                    f"从 <a href='https://nijigaku.top/2023/10/03/BangDreamTTS/'>我的博客站点</a> 查看自制galgame使用说明\n</a>"
                                )
                    inputFile = gr.UploadButton(label="txt文件输入")
                    raw_text = gr.TextArea(
                                        label="文本输入",
                                        info="输入纯日语",
                                        value="つくし|なんではるひかげやったの?!!",
                    )
                    groupSize = gr.Slider(
                    minimum=10, maximum=1000 if  torch.cuda.is_available() else 50,value = 50, step=1, label="单个音频文件包含的最大字数"
                    )
                    silenceTime = gr.Slider(
                    minimum=0, maximum=1, value=0.5, step=0.01, label="句子的间隔"
                    )
                    filepath = gr.TextArea(
                                        label="本地合成时的音频存储文件夹(会清空文件夹)",
                                        value = "D:/audiobook/book1",
                    )
                    spealerList = gr.TextArea(
                                        label="角色对应表,左边是你想要在每一句话合成中用到的speaker(见角色清单)右边是你上传文本时分隔符左边设置的说话人:{ChoseSpeakerFromConfigList}|{SeakerInUploadText}",
                                        value = "ましろ|真白\n七深|七深\n透子|透子\nつくし|筑紫\n瑠唯|瑠唯\nそよ|素世\n祥子|祥子",
                    )                  
                    speaker = gr.Dropdown(
                        choices=speakers, value = "ましろ", label="选择默认说话人"
                    )
                with gr.Column():
                    sdp_ratio = gr.Slider(
                    minimum=0, maximum=1, value=0.5, step=0.01, label="SDP/DP混合比"
                    )
                    noise_scale = gr.Slider(
                        minimum=0.1, maximum=2, value=0.6, step=0.01, label="感情调节"
                    )
                    noise_scale_w = gr.Slider(
                        minimum=0.1, maximum=2, value=0.667, step=0.01, label="音素长度"
                    )
                    length_scale = gr.Slider(
                        minimum=0.1, maximum=2, value=1, step=0.01, label="生成长度"
                    )
                    LastAudioOutput = gr.Audio(label="当使用cuda时才能在本地文件夹浏览全部文件")
                    btn2 = gr.Button("点击生成", variant="primary")
                btn2.click(
                    audiobook,
                    inputs=[
                        inputFile,
                        groupSize,
                        speaker,
                        sdp_ratio,
                        noise_scale,
                        noise_scale_w,
                        length_scale,
                        spealerList,
                        silenceTime,
                        filepath,
                        raw_text
                    ],
                    outputs=[LastAudioOutput],
                )
    print("推理页面已开启!")
    app.launch()