Mahiruoshi
commited on
Commit
·
b522165
1
Parent(s):
be9e927
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import logging
|
|
2 |
logging.getLogger('numba').setLevel(logging.WARNING)
|
3 |
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
4 |
logging.getLogger('urllib3').setLevel(logging.WARNING)
|
5 |
-
import
|
6 |
import re
|
7 |
import numpy as np
|
8 |
import IPython.display as ipd
|
@@ -16,129 +16,251 @@ import gradio as gr
|
|
16 |
import time
|
17 |
import datetime
|
18 |
import os
|
19 |
-
import pickle
|
20 |
-
import openai
|
21 |
-
from scipy.io.wavfile import write
|
22 |
import librosa
|
23 |
from mel_processing import spectrogram_torch
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
for ch in string:
|
26 |
if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
|
27 |
return True
|
28 |
return False
|
29 |
-
|
30 |
-
def is_english(string):
|
31 |
import re
|
32 |
pattern = re.compile('^[A-Za-z0-9.,:;!?()_*"\' ]+$')
|
33 |
if pattern.fullmatch(string):
|
34 |
return True
|
35 |
else:
|
36 |
return False
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
if item['role'] == 'user':
|
42 |
-
chat_html += f"""
|
43 |
-
<div style="margin-bottom: 20px;">
|
44 |
-
<div style="text-align: right; margin-right: 20px;">
|
45 |
-
<span style="background-color: #4CAF50; color: black; padding: 10px; border-radius: 10px; display: inline-block; max-width: 80%; word-wrap: break-word;">
|
46 |
-
{item['content']}
|
47 |
-
</span>
|
48 |
-
</div>
|
49 |
-
</div>
|
50 |
-
"""
|
51 |
-
else:
|
52 |
-
chat_html += f"""
|
53 |
-
<div style="margin-bottom: 20px;">
|
54 |
-
<div style="text-align: left; margin-left: 20px;">
|
55 |
-
<span style="background-color: white; color: black; padding: 10px; border-radius: 10px; display: inline-block; max-width: 80%; word-wrap: break-word;">
|
56 |
-
{item['content']}
|
57 |
-
</span>
|
58 |
-
</div>
|
59 |
-
</div>
|
60 |
-
"""
|
61 |
-
output_html = f"""
|
62 |
-
<div style="height: 400px; overflow-y: scroll; padding: 10px;">
|
63 |
-
{chat_html}
|
64 |
-
</div>
|
65 |
-
"""
|
66 |
-
return output_html
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
return
|
75 |
-
for i in result_list:
|
76 |
-
if is_english(i):
|
77 |
-
i = romajitable.to_kana(i).katakana
|
78 |
-
i = i.replace('\n','').replace(' ','')
|
79 |
-
#Current length of single sentence: 20
|
80 |
-
if len(i)>1:
|
81 |
-
if len(i) > 20:
|
82 |
-
try:
|
83 |
-
cur_list = re.split(r'。|!', i)
|
84 |
-
for i in cur_list:
|
85 |
-
if len(i)>1:
|
86 |
-
final_list.append(i+'。')
|
87 |
-
except:
|
88 |
-
pass
|
89 |
-
else:
|
90 |
-
final_list.append(i)
|
91 |
-
final_list = [x for x in final_list if x != '']
|
92 |
-
print(final_list)
|
93 |
-
return final_list
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
with open('log.pickle', 'rb') as f:
|
103 |
-
messages = pickle.load(f)
|
104 |
-
messages.append({"role": "user", "content": text},)
|
105 |
-
chat = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages)
|
106 |
-
reply = chat.choices[0].message.content
|
107 |
-
messages.append({"role": "assistant", "content": reply})
|
108 |
-
print(messages[-1])
|
109 |
-
if len(messages) == 12:
|
110 |
-
messages[6:10] = messages[8:]
|
111 |
-
del messages[-2:]
|
112 |
-
with open('log.pickle', 'wb') as f:
|
113 |
-
messages2 = []
|
114 |
-
pickle.dump(messages2, f)
|
115 |
-
return reply,messages
|
116 |
-
except:
|
117 |
-
messages.append({"role": "user", "content": text},)
|
118 |
-
chat = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages)
|
119 |
-
reply = chat.choices[0].message.content
|
120 |
-
messages.append({"role": "assistant", "content": reply})
|
121 |
-
print(messages[-1])
|
122 |
-
if len(messages) == 12:
|
123 |
-
messages[6:10] = messages[8:]
|
124 |
-
del messages[-2:]
|
125 |
-
with open('log.pickle', 'wb') as f:
|
126 |
-
pickle.dump(messages, f)
|
127 |
-
return reply,messages
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
if language == "中文":
|
138 |
tts_input1 = "[ZH]" + text + "[ZH]"
|
139 |
return tts_input1
|
140 |
elif language == "自动":
|
141 |
-
tts_input1 = f"[JA]{text}[JA]" if is_japanese(text) else f"[ZH]{text}[ZH]"
|
142 |
return tts_input1
|
143 |
elif language == "日文":
|
144 |
tts_input1 = "[JA]" + text + "[JA]"
|
@@ -148,394 +270,125 @@ def sle(language,text):
|
|
148 |
return tts_input1
|
149 |
elif language == "手动":
|
150 |
return text
|
151 |
-
|
152 |
-
def
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
input_audio = record_audio if record_audio is not None else upload_audio
|
162 |
-
original_speaker_id = selection(original_speaker)
|
163 |
-
target_speaker_id = selection(target_speaker)
|
164 |
if input_audio is None:
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
sampling_rate = hps.data.sampling_rate
|
172 |
-
else:
|
173 |
-
sampling_rate, audio = input_audio
|
174 |
-
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
175 |
if len(audio.shape) > 1:
|
176 |
audio = librosa.to_mono(audio.transpose(1, 0))
|
177 |
-
if sampling_rate != hps.data.sampling_rate:
|
178 |
-
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=hps.data.sampling_rate)
|
179 |
with torch.no_grad():
|
180 |
y = torch.FloatTensor(audio)
|
181 |
y = y / max(-y.min(), y.max()) / 0.99
|
182 |
-
y = y.to(dev)
|
183 |
y = y.unsqueeze(0)
|
184 |
-
spec = spectrogram_torch(y, hps.data.filter_length,
|
185 |
-
|
186 |
-
|
187 |
-
spec_lengths = torch.LongTensor([spec.size(-1)]).to(dev)
|
188 |
-
sid_src = torch.LongTensor([original_speaker_id]).to(dev)
|
189 |
-
sid_tgt = torch.LongTensor([target_speaker_id]).to(dev)
|
190 |
-
audio = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][
|
191 |
0, 0].data.cpu().float().numpy()
|
192 |
del y, spec, spec_lengths, sid_src, sid_tgt
|
193 |
-
return "Success", (hps.data.sampling_rate, audio)
|
194 |
-
return vc_fn
|
195 |
-
|
196 |
-
def selection(speaker):
|
197 |
-
if speaker == "高咲侑":
|
198 |
-
spk = 0
|
199 |
-
return spk
|
200 |
-
|
201 |
-
elif speaker == "歩夢":
|
202 |
-
spk = 1
|
203 |
-
return spk
|
204 |
-
|
205 |
-
elif speaker == "かすみ":
|
206 |
-
spk = 2
|
207 |
-
return spk
|
208 |
-
|
209 |
-
elif speaker == "しずく":
|
210 |
-
spk = 3
|
211 |
-
return spk
|
212 |
-
|
213 |
-
elif speaker == "果林":
|
214 |
-
spk = 4
|
215 |
-
return spk
|
216 |
-
|
217 |
-
elif speaker == "愛":
|
218 |
-
spk = 5
|
219 |
-
return spk
|
220 |
-
|
221 |
-
elif speaker == "彼方":
|
222 |
-
spk = 6
|
223 |
-
return spk
|
224 |
-
|
225 |
-
elif speaker == "せつ菜":
|
226 |
-
spk = 7
|
227 |
-
return spk
|
228 |
-
|
229 |
-
elif speaker == "エマ":
|
230 |
-
spk = 8
|
231 |
-
return spk
|
232 |
-
|
233 |
-
elif speaker == "璃奈":
|
234 |
-
spk = 9
|
235 |
-
return spk
|
236 |
-
|
237 |
-
elif speaker == "栞子":
|
238 |
-
spk = 10
|
239 |
-
return spk
|
240 |
-
|
241 |
-
elif speaker == "ランジュ":
|
242 |
-
spk = 11
|
243 |
-
return spk
|
244 |
-
|
245 |
-
elif speaker == "ミア":
|
246 |
-
spk = 12
|
247 |
-
return spk
|
248 |
-
|
249 |
-
elif speaker == "派蒙":
|
250 |
-
spk = 16
|
251 |
-
return spk
|
252 |
-
|
253 |
-
elif speaker == "c1":
|
254 |
-
spk = 18
|
255 |
-
return spk
|
256 |
-
|
257 |
-
elif speaker == "c2":
|
258 |
-
spk = 19
|
259 |
-
return spk
|
260 |
-
|
261 |
-
elif speaker == "華恋":
|
262 |
-
spk = 21
|
263 |
-
return spk
|
264 |
-
|
265 |
-
elif speaker == "まひる":
|
266 |
-
spk = 22
|
267 |
-
return spk
|
268 |
-
|
269 |
-
elif speaker == "なな":
|
270 |
-
spk = 23
|
271 |
-
return spk
|
272 |
-
|
273 |
-
elif speaker == "クロディーヌ":
|
274 |
-
spk = 24
|
275 |
-
return spk
|
276 |
-
|
277 |
-
elif speaker == "ひかり":
|
278 |
-
spk = 25
|
279 |
-
return spk
|
280 |
-
|
281 |
-
elif speaker == "純那":
|
282 |
-
spk = 26
|
283 |
-
return spk
|
284 |
-
|
285 |
-
elif speaker == "香子":
|
286 |
-
spk = 27
|
287 |
-
return spk
|
288 |
-
|
289 |
-
elif speaker == "真矢":
|
290 |
-
spk = 28
|
291 |
-
return spk
|
292 |
-
|
293 |
-
elif speaker == "双葉":
|
294 |
-
spk = 29
|
295 |
-
return spk
|
296 |
-
|
297 |
-
elif speaker == "ミチル":
|
298 |
-
spk = 30
|
299 |
-
return spk
|
300 |
-
|
301 |
-
elif speaker == "メイファン":
|
302 |
-
spk = 31
|
303 |
-
return spk
|
304 |
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
elif speaker == "晶":
|
310 |
-
spk = 33
|
311 |
-
return spk
|
312 |
-
|
313 |
-
elif speaker == "いちえ":
|
314 |
-
spk = 34
|
315 |
-
return spk
|
316 |
-
|
317 |
-
elif speaker == "ゆゆ子":
|
318 |
-
spk = 35
|
319 |
-
return spk
|
320 |
-
|
321 |
-
elif speaker == "塁":
|
322 |
-
spk = 36
|
323 |
-
return spk
|
324 |
-
|
325 |
-
elif speaker == "珠緒":
|
326 |
-
spk = 37
|
327 |
-
return spk
|
328 |
-
|
329 |
-
elif speaker == "あるる":
|
330 |
-
spk = 38
|
331 |
-
return spk
|
332 |
-
|
333 |
-
elif speaker == "ララフィン":
|
334 |
-
spk = 39
|
335 |
-
return spk
|
336 |
-
|
337 |
-
elif speaker == "美空":
|
338 |
-
spk = 40
|
339 |
-
return spk
|
340 |
-
|
341 |
-
elif speaker == "静羽":
|
342 |
-
spk = 41
|
343 |
-
return spk
|
344 |
-
|
345 |
-
else:
|
346 |
-
return 0
|
347 |
-
|
348 |
-
def check_text(input):
|
349 |
-
if isinstance(input, str):
|
350 |
-
return input
|
351 |
-
else:
|
352 |
-
with open(input.name, "r", encoding="utf-8") as f:
|
353 |
-
return f.read()
|
354 |
-
|
355 |
-
def create_tts_fn(net_g,hps,speaker_id):
|
356 |
-
speaker_id = int(speaker_id)
|
357 |
-
def tts_fn(is_gpt,api_key,is_audio,audiopath,repeat_time,text, language, extract, n_scale= 0.667,n_scale_w = 0.8, l_scale = 1 ):
|
358 |
-
text = check_text(text)
|
359 |
-
repeat_ime = int(repeat_time)
|
360 |
-
if is_gpt:
|
361 |
-
openai.api_key = api_key
|
362 |
-
text,messages = chatgpt(text)
|
363 |
-
htm = to_html(messages)
|
364 |
-
else:
|
365 |
-
messages = []
|
366 |
-
messages.append({"role": "assistant", "content": text})
|
367 |
-
htm = to_html(messages)
|
368 |
-
if language == '自动':
|
369 |
-
l_scale = 1.1 if is_japanese(text) else l_scale
|
370 |
-
if not extract:
|
371 |
t1 = time.time()
|
372 |
-
stn_tst = get_text(sle(language,text)
|
373 |
with torch.no_grad():
|
374 |
-
x_tst = stn_tst.unsqueeze(0).to(dev)
|
375 |
-
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev)
|
376 |
-
sid = torch.LongTensor([speaker_id]).to(dev)
|
377 |
-
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=n_scale, noise_scale_w=n_scale_w, length_scale=l_scale)[0][0,0].data.cpu().float().numpy()
|
378 |
t2 = time.time()
|
379 |
spending_time = "推理时间为:"+str(t2-t1)+"s"
|
380 |
print(spending_time)
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
a = ['【','[','(','(']
|
393 |
-
b = ['】',']',')',')']
|
394 |
-
for i in a:
|
395 |
-
text = text.replace(i,'<')
|
396 |
-
for i in b:
|
397 |
-
text = text.replace(i,'>')
|
398 |
-
final_list = extrac(text.replace('“','').replace('”',''))
|
399 |
-
audio_fin = []
|
400 |
-
c = 0
|
401 |
-
t = datetime.timedelta(seconds=0)
|
402 |
-
for sentence in final_list:
|
403 |
-
try:
|
404 |
-
f1 = open("subtitles.srt",'w',encoding='utf-8')
|
405 |
-
c +=1
|
406 |
-
stn_tst = get_text(sle(language,sentence),hps)
|
407 |
-
with torch.no_grad():
|
408 |
-
x_tst = stn_tst.unsqueeze(0).to(dev)
|
409 |
-
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev)
|
410 |
-
sid = torch.LongTensor([speaker_id]).to(dev)
|
411 |
-
t1 = time.time()
|
412 |
-
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=n_scale, noise_scale_w=n_scale_w, length_scale=l_scale)[0][0,0].data.cpu().float().numpy()
|
413 |
-
t2 = time.time()
|
414 |
-
spending_time = "第"+str(c)+"句的推理时间为:"+str(t2-t1)+"s"
|
415 |
-
print(spending_time)
|
416 |
-
time_start = str(t).split(".")[0] + "," + str(t.microseconds)[:3]
|
417 |
-
last_time = datetime.timedelta(seconds=len(audio)/float(22050))
|
418 |
-
t+=last_time
|
419 |
-
time_end = str(t).split(".")[0] + "," + str(t.microseconds)[:3]
|
420 |
-
print(time_end)
|
421 |
-
f1.write(str(c-1)+'\n'+time_start+' --> '+time_end+'\n'+sentence+'\n\n')
|
422 |
-
audio_fin.append(audio)
|
423 |
-
except:
|
424 |
-
pass
|
425 |
-
try:
|
426 |
-
write(audiopath + '.wav',22050,np.concatenate(audio_fin))
|
427 |
-
if is_audio:
|
428 |
-
for i in range(repeat_time):
|
429 |
-
cmd = 'ffmpeg -y -i ' + audiopath + '.wav' + ' -ar 44100 '+ audiopath.replace('temp','temp'+str(i))
|
430 |
-
os.system(cmd)
|
431 |
-
|
432 |
-
except:
|
433 |
-
pass
|
434 |
-
|
435 |
-
file_path = "subtitles.srt"
|
436 |
-
return (hps.data.sampling_rate, np.concatenate(audio_fin)),file_path,htm
|
437 |
-
return tts_fn
|
438 |
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
idols = ["派蒙"]
|
477 |
-
for (sid, name, title, example, tts_fn) in models[schools_list.index(i)]:
|
478 |
-
idols.append(name)
|
479 |
-
with gr.TabItem(name):
|
480 |
-
with gr.Column():
|
481 |
-
with gr.Row():
|
482 |
-
with gr.Row():
|
483 |
-
gr.Markdown(
|
484 |
-
'<div align="center">'
|
485 |
-
f'<img style="width:auto;height:400px;" src="file/image/{name}.png">'
|
486 |
-
'</div>'
|
487 |
-
)
|
488 |
-
output_UI = gr.outputs.HTML()
|
489 |
-
with gr.Row():
|
490 |
-
with gr.Column(scale=0.85):
|
491 |
-
input1 = gr.TextArea(label="Text", value=example,lines = 1)
|
492 |
-
with gr.Column(scale=0.15, min_width=0):
|
493 |
-
btnVC = gr.Button("Send")
|
494 |
-
output1 = gr.Audio(label="采样率22050")
|
495 |
-
with gr.Accordion(label="Setting(TTS)", open=False):
|
496 |
-
input2 = gr.Dropdown(label="参数及语言选择方式", choices=lan, value="自动", interactive=True)
|
497 |
-
input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.6)
|
498 |
-
input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.668)
|
499 |
-
input6 = gr.Slider(minimum=0.1, maximum=10, label="duration", value=1)
|
500 |
-
with gr.Accordion(label="Advanced Setting(GPT3.5接口+小说合成,仅展示用,大部分功能用不了。需克隆本仓库后本地运行main.py)", open=False):
|
501 |
-
input3 = gr.Checkbox(value=False, label="长句切割(小说合成)")
|
502 |
-
inputxt = gr.File(label="Text")
|
503 |
-
btnbook = gr.Button("小说合成")
|
504 |
-
output2 = gr.outputs.File(label="字幕文件:subtitles.srt")
|
505 |
-
api_input1 = gr.Checkbox(value=False, label="接入chatgpt")
|
506 |
-
api_input2 = gr.TextArea(label="api-key",lines=1,value = '见 https://openai.com/blog/openai-api')
|
507 |
-
audio_input1 = gr.Checkbox(value=False, label="修改音频路径(live2d)")
|
508 |
-
audio_input2 = gr.TextArea(label="音频路径",lines=1,value = '#参考 D:/app_develop/live2d_whole/2010002/sounds/temp.wav')
|
509 |
-
audio_input3 = gr.Dropdown(label="重复生成次数", choices=list(range(101)), value='0', interactive=True)
|
510 |
-
btnbook.click(tts_fn, inputs=[api_input1,api_input2,audio_input1,audio_input2,audio_input3,inputxt,input2,input3,input4,input5,input6], outputs=[output1,output2,output_UI])
|
511 |
-
btnVC.click(tts_fn, inputs=[api_input1,api_input2,audio_input1,audio_input2,audio_input3,input1,input2,input3,input4,input5,input6], outputs=[output1,output2,output_UI])
|
512 |
-
with gr.Tab("Voice Conversion(类似sovits)"):
|
513 |
-
gr.Markdown("""
|
514 |
-
声线转化,使用模型中的说话人作为音源时效果更佳
|
515 |
-
""")
|
516 |
-
with gr.Column():
|
517 |
-
with gr.Accordion(label="方法1:录制或上传声音,可进行歌声合成", open=False):
|
518 |
-
record_audio = gr.Audio(label="record your voice", source="microphone")
|
519 |
-
upload_audio = gr.Audio(label="or upload audio here", source="upload")
|
520 |
-
with gr.Accordion(label="方法2:由原说话人先进行tts后套娃,适用于合成中文等特殊场景", open=True):
|
521 |
-
text = gr.TextArea(label="Text", value='输入文本',lines = 1)
|
522 |
-
language = gr.Dropdown(label="Language", choices=lan, value="自动", interactive=True)
|
523 |
-
n_scale = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.6)
|
524 |
-
n_scale_w = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.668)
|
525 |
-
l_scale = gr.Slider(minimum=0.1, maximum=10, label="duration", value=1.1)
|
526 |
-
source_speaker = gr.Dropdown(choices=idols, value=idols[-2], label="source speaker")
|
527 |
-
target_speaker = gr.Dropdown(choices=idols, value=idols[-3], label="target speaker")
|
528 |
-
with gr.Column():
|
529 |
-
message_box = gr.Textbox(label="Message")
|
530 |
-
converted_audio = gr.Audio(label='converted audio')
|
531 |
-
btn = gr.Button("Convert!")
|
532 |
-
btn.click(vc_fn, inputs=[text,language,n_scale,n_scale_w,l_scale,source_speaker, target_speaker, record_audio, upload_audio],
|
533 |
-
outputs=[message_box, converted_audio])
|
534 |
-
with gr.Tab("说明"):
|
535 |
-
gr.Markdown(
|
536 |
-
"### <center> 请不要生成会对个人以及企划造成侵害的内容,自觉遵守相关法律,静止商业使用或让他人产生困扰\n"
|
537 |
-
"<div align='center'>从左到右分别是虹团,少歌中文特化版,以及五校混合版。这三个均为不同的模型,效果也有差异</div>\n"
|
538 |
-
"<div align='center'>因为我会时不时地更新模型,所以会碰到平台抽风问题,大部分情况下一天就能恢复了。</div>\n"
|
539 |
-
'<div align="center"><a>参数说明:这个十分玄学,如果效果不佳可以将噪声比例和噪声偏差调节至0,这会完全随机化音频源。按照经验,合成日语时也可以将噪声比例调节至0.2-0.3区间,语调会正常一些。duration代表整体语速,可视情况调至1.1或1.2,目前已自动匹配,如需调整将language项调为日文或中文。</div>'
|
540 |
-
'<div align="center"><a>建议只在平台上体验最基础的功能,强烈建议将该仓库克隆至本地或者于colab运行,启动程序为main.py或app.py</div>')
|
541 |
-
app.launch()
|
|
|
2 |
logging.getLogger('numba').setLevel(logging.WARNING)
|
3 |
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
4 |
logging.getLogger('urllib3').setLevel(logging.WARNING)
|
5 |
+
import romajitable
|
6 |
import re
|
7 |
import numpy as np
|
8 |
import IPython.display as ipd
|
|
|
16 |
import time
|
17 |
import datetime
|
18 |
import os
|
|
|
|
|
|
|
19 |
import librosa
|
20 |
from mel_processing import spectrogram_torch
|
21 |
+
class VitsGradio:
|
22 |
+
def __init__(self):
|
23 |
+
self.dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
24 |
+
self.lan = ["中文","日文","自动","手动"]
|
25 |
+
self.idols = ["c1","c2","高咲侑","歩夢","かすみ","しずく","果林","愛","彼方","せつ菜","璃奈","栞子","エマ","ランジュ","ミア","華恋","まひる","なな","クロディーヌ","ひかり",'純那',"香子","真矢","双葉","ミチル","メイファン","やちよ","晶","いちえ","ゆゆ子","塁","珠緒","あるる","ララフィン","美空","静羽","あるる"]
|
26 |
+
self.modelPaths = []
|
27 |
+
for root,dirs,files in os.walk("checkpoints"):
|
28 |
+
for dir in dirs:
|
29 |
+
self.modelPaths.append(dir)
|
30 |
+
with gr.Blocks() as self.Vits:
|
31 |
+
gr.Markdown(
|
32 |
+
"## <center> Lovelive虹团中日双语VITS\n"
|
33 |
+
"### <center> 请不要生成会对个人以及企划造成侵害的内容\n"
|
34 |
+
"<div align='center'>目前有标贝普通话版,去标贝版,少歌模型还是大饼状态</div>"
|
35 |
+
'<div align="center"><a>参数说明:由于爱抖露们过于有感情,合成日语时建议将噪声比例调节至0.2-0.3区间,噪声偏差对应着每个字之间的间隔,对普通话影响较大,duration代表整体语速</div>'
|
36 |
+
'<div align="center"><a>合成前请先选择模型,否则第一次合成不一定成功。长段落/小说合成建议colab或本地运行</div>')
|
37 |
+
with gr.Tab("TTS合成"):
|
38 |
+
with gr.Row():
|
39 |
+
with gr.Column():
|
40 |
+
with gr.Row():
|
41 |
+
with gr.Column():
|
42 |
+
input1 = gr.TextArea(label="Text", value="为什么你会那么熟练啊?你和雪菜亲过多少次了")
|
43 |
+
input2 = gr.Dropdown(label="Language", choices=self.lan, value="自动", interactive=True)
|
44 |
+
input3 = gr.Dropdown(label="Speaker", choices=self.idols, value="歩夢", interactive=True)
|
45 |
+
btnVC = gr.Button("Submit")
|
46 |
+
with gr.Column():
|
47 |
+
input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.267)
|
48 |
+
input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.7)
|
49 |
+
input6 = gr.Slider(minimum=0.1, maximum=10, label="duration", value=1)
|
50 |
+
output1 = gr.Audio(label="采样率22050")
|
51 |
+
btnVC.click(self.infer, inputs=[input1, input2, input3, input4, input5, input6], outputs=[output1])
|
52 |
+
with gr.Tab("选择模型"):
|
53 |
+
with gr.Column():
|
54 |
+
modelstrs = gr.Dropdown(label = "模型", choices = self.modelPaths, value = self.modelPaths[0], type = "value")
|
55 |
+
btnMod = gr.Button("载入模型")
|
56 |
+
statusa = gr.TextArea()
|
57 |
+
btnMod.click(self.loadCk, inputs=[modelstrs], outputs = [statusa])
|
58 |
+
with gr.Tab("Voice Conversion"):
|
59 |
+
gr.Markdown("""
|
60 |
+
录制或上传声音,并选择要转换的音色。
|
61 |
+
""")
|
62 |
+
with gr.Column():
|
63 |
+
record_audio = gr.Audio(label="record your voice", source="microphone")
|
64 |
+
upload_audio = gr.Audio(label="or upload audio here", source="upload")
|
65 |
+
source_speaker = gr.Dropdown(choices=self.idols, value="歩夢", label="source speaker")
|
66 |
+
target_speaker = gr.Dropdown(choices=self.idols, value="歩夢", label="target speaker")
|
67 |
+
with gr.Column():
|
68 |
+
message_box = gr.Textbox(label="Message")
|
69 |
+
converted_audio = gr.Audio(label='converted audio')
|
70 |
+
btn = gr.Button("Convert!")
|
71 |
+
btn.click(self.vc_fn, inputs=[source_speaker, target_speaker, record_audio, upload_audio],
|
72 |
+
outputs=[message_box, converted_audio])
|
73 |
+
with gr.Tab("小说合成(带字幕)"):
|
74 |
+
with gr.Row():
|
75 |
+
with gr.Column():
|
76 |
+
with gr.Row():
|
77 |
+
with gr.Column():
|
78 |
+
input1 = gr.TextArea(label="建议colab或本地克隆后运行本仓库", value="为什么你会那么熟练啊?你和雪菜亲过多少次了")
|
79 |
+
input2 = gr.Dropdown(label="Language", choices=self.lan, value="自动", interactive=True)
|
80 |
+
input3 = gr.Dropdown(label="Speaker", choices=self.idols, value="歩夢", interactive=True)
|
81 |
+
btnVC = gr.Button("Submit")
|
82 |
+
with gr.Column():
|
83 |
+
input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.267)
|
84 |
+
input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.7)
|
85 |
+
input6 = gr.Slider(minimum=0.1, maximum=10, label="Duration", value=1)
|
86 |
+
output1 = gr.Audio(label="采样率22050")
|
87 |
+
subtitle = gr.outputs.File(label="字幕文件:subtitles.srt")
|
88 |
+
btnVC.click(self.infer2, inputs=[input1, input2, input3, input4, input5, input6], outputs=[output1,subtitle])
|
89 |
+
|
90 |
+
def loadCk(self,path):
|
91 |
+
self.hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
|
92 |
+
self.net_g = SynthesizerTrn(
|
93 |
+
len(symbols),
|
94 |
+
self.hps.data.filter_length // 2 + 1,
|
95 |
+
self.hps.train.segment_size // self.hps.data.hop_length,
|
96 |
+
n_speakers=self.hps.data.n_speakers,
|
97 |
+
**self.hps.model).to(self.dev)
|
98 |
+
_ = self.net_g.eval()
|
99 |
+
_ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", self.net_g)
|
100 |
+
return "success"
|
101 |
+
|
102 |
+
def get_text(self,text):
|
103 |
+
text_norm = text_to_sequence(text,self.hps.data.text_cleaners)
|
104 |
+
if self.hps.data.add_blank:
|
105 |
+
text_norm = commons.intersperse(text_norm, 0)
|
106 |
+
text_norm = torch.LongTensor(text_norm)
|
107 |
+
return text_norm
|
108 |
+
|
109 |
+
def is_japanese(self,string):
|
110 |
for ch in string:
|
111 |
if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
|
112 |
return True
|
113 |
return False
|
114 |
+
|
115 |
+
def is_english(self,string):
|
116 |
import re
|
117 |
pattern = re.compile('^[A-Za-z0-9.,:;!?()_*"\' ]+$')
|
118 |
if pattern.fullmatch(string):
|
119 |
return True
|
120 |
else:
|
121 |
return False
|
122 |
+
|
123 |
+
def selection(self,speaker):
|
124 |
+
if speaker == "高咲侑":
|
125 |
+
spk = 0
|
126 |
+
return spk
|
127 |
|
128 |
+
elif speaker == "歩夢":
|
129 |
+
spk = 1
|
130 |
+
return spk
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
+
elif speaker == "かすみ":
|
133 |
+
spk = 2
|
134 |
+
return spk
|
135 |
+
|
136 |
+
elif speaker == "しずく":
|
137 |
+
spk = 3
|
138 |
+
return spk
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
+
elif speaker == "果林":
|
141 |
+
spk = 4
|
142 |
+
return spk
|
143 |
+
|
144 |
+
elif speaker == "愛":
|
145 |
+
spk = 5
|
146 |
+
return spk
|
147 |
|
148 |
+
elif speaker == "彼方":
|
149 |
+
spk = 6
|
150 |
+
return spk
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
+
elif speaker == "せつ菜":
|
153 |
+
spk = 7
|
154 |
+
return spk
|
155 |
+
elif speaker == "エマ":
|
156 |
+
spk = 8
|
157 |
+
return spk
|
158 |
+
elif speaker == "璃奈":
|
159 |
+
spk = 9
|
160 |
+
return spk
|
161 |
+
elif speaker == "栞子":
|
162 |
+
spk = 10
|
163 |
+
return spk
|
164 |
+
elif speaker == "ランジュ":
|
165 |
+
spk = 11
|
166 |
+
return spk
|
167 |
+
elif speaker == "ミア":
|
168 |
+
spk = 12
|
169 |
+
return spk
|
170 |
+
|
171 |
+
elif speaker == "派蒙":
|
172 |
+
spk = 16
|
173 |
+
return spk
|
174 |
+
|
175 |
+
elif speaker == "c1":
|
176 |
+
spk = 18
|
177 |
+
return spk
|
178 |
|
179 |
+
elif speaker == "c2":
|
180 |
+
spk = 19
|
181 |
+
return spk
|
182 |
+
|
183 |
+
elif speaker == "華恋":
|
184 |
+
spk = 21
|
185 |
+
return spk
|
186 |
+
|
187 |
+
elif speaker == "まひる":
|
188 |
+
spk = 22
|
189 |
+
return spk
|
190 |
+
|
191 |
+
elif speaker == "なな":
|
192 |
+
spk = 23
|
193 |
+
return spk
|
194 |
+
|
195 |
+
elif speaker == "クロディーヌ":
|
196 |
+
spk = 24
|
197 |
+
return spk
|
198 |
+
|
199 |
+
elif speaker == "ひかり":
|
200 |
+
spk = 25
|
201 |
+
return spk
|
202 |
+
|
203 |
+
elif speaker == "純那":
|
204 |
+
spk = 26
|
205 |
+
return spk
|
206 |
+
|
207 |
+
elif speaker == "香子":
|
208 |
+
spk = 27
|
209 |
+
return spk
|
210 |
+
|
211 |
+
elif speaker == "真矢":
|
212 |
+
spk = 28
|
213 |
+
return spk
|
214 |
+
elif speaker == "双葉":
|
215 |
+
spk = 29
|
216 |
+
return spk
|
217 |
+
elif speaker == "ミチル":
|
218 |
+
spk = 30
|
219 |
+
return spk
|
220 |
+
elif speaker == "メイファン":
|
221 |
+
spk = 31
|
222 |
+
return spk
|
223 |
+
elif speaker == "やちよ":
|
224 |
+
spk = 32
|
225 |
+
return spk
|
226 |
+
elif speaker == "晶":
|
227 |
+
spk = 33
|
228 |
+
return spk
|
229 |
+
elif speaker == "いちえ":
|
230 |
+
spk = 34
|
231 |
+
return spk
|
232 |
+
elif speaker == "ゆゆ子":
|
233 |
+
spk = 35
|
234 |
+
return spk
|
235 |
+
elif speaker == "塁":
|
236 |
+
spk = 36
|
237 |
+
return spk
|
238 |
+
elif speaker == "珠緒":
|
239 |
+
spk = 37
|
240 |
+
return spk
|
241 |
+
elif speaker == "あるる":
|
242 |
+
spk = 38
|
243 |
+
return spk
|
244 |
+
elif speaker == "ララフィン":
|
245 |
+
spk = 39
|
246 |
+
return spk
|
247 |
+
elif speaker == "美空":
|
248 |
+
spk = 40
|
249 |
+
return spk
|
250 |
+
elif speaker == "静羽":
|
251 |
+
spk = 41
|
252 |
+
return spk
|
253 |
+
else:
|
254 |
+
return 0
|
255 |
+
|
256 |
+
|
257 |
+
def sle(self,language,text):
|
258 |
+
text = text.replace('\n','。').replace(' ',',')
|
259 |
if language == "中文":
|
260 |
tts_input1 = "[ZH]" + text + "[ZH]"
|
261 |
return tts_input1
|
262 |
elif language == "自动":
|
263 |
+
tts_input1 = f"[JA]{text}[JA]" if self.is_japanese(text) else f"[ZH]{text}[ZH]"
|
264 |
return tts_input1
|
265 |
elif language == "日文":
|
266 |
tts_input1 = "[JA]" + text + "[JA]"
|
|
|
270 |
return tts_input1
|
271 |
elif language == "手动":
|
272 |
return text
|
273 |
+
|
274 |
+
def extrac(self,text):
|
275 |
+
text = re.sub("<[^>]*>","",text)
|
276 |
+
result_list = re.split(r'\n', text)
|
277 |
+
final_list = []
|
278 |
+
for i in result_list:
|
279 |
+
if self.is_english(i):
|
280 |
+
i = romajitable.to_kana(i).katakana
|
281 |
+
i = i.replace('\n','').replace(' ','')
|
282 |
+
#Current length of single sentence: 20
|
283 |
+
'''
|
284 |
+
if len(i)>1:
|
285 |
+
if len(i) > 20:
|
286 |
+
try:
|
287 |
+
cur_list = re.split(r'。|!', i)
|
288 |
+
for i in cur_list:
|
289 |
+
if len(i)>1:
|
290 |
+
final_list.append(i+'。')
|
291 |
+
except:
|
292 |
+
pass
|
293 |
+
else:
|
294 |
+
final_list.append(i)
|
295 |
+
'''
|
296 |
+
try:
|
297 |
+
final_list.append(i)
|
298 |
+
except:
|
299 |
+
pass
|
300 |
+
final_list = [x for x in final_list if x != '']
|
301 |
+
print(final_list)
|
302 |
+
return final_list
|
303 |
+
|
304 |
+
def vc_fn(self,original_speaker, target_speaker, record_audio, upload_audio):
|
305 |
input_audio = record_audio if record_audio is not None else upload_audio
|
|
|
|
|
306 |
if input_audio is None:
|
307 |
+
return "You need to record or upload an audio", None
|
308 |
+
sampling_rate, audio = input_audio
|
309 |
+
original_speaker_id = self.selection(original_speaker)
|
310 |
+
target_speaker_id = self.selection(target_speaker)
|
311 |
+
|
312 |
+
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
|
|
|
|
|
|
|
|
313 |
if len(audio.shape) > 1:
|
314 |
audio = librosa.to_mono(audio.transpose(1, 0))
|
315 |
+
if sampling_rate != self.hps.data.sampling_rate:
|
316 |
+
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=self.hps.data.sampling_rate)
|
317 |
with torch.no_grad():
|
318 |
y = torch.FloatTensor(audio)
|
319 |
y = y / max(-y.min(), y.max()) / 0.99
|
320 |
+
y = y.to(self.dev)
|
321 |
y = y.unsqueeze(0)
|
322 |
+
spec = spectrogram_torch(y, self.hps.data.filter_length,
|
323 |
+
self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length,
|
324 |
+
center=False).to(self.dev)
|
325 |
+
spec_lengths = torch.LongTensor([spec.size(-1)]).to(self.dev)
|
326 |
+
sid_src = torch.LongTensor([original_speaker_id]).to(self.dev)
|
327 |
+
sid_tgt = torch.LongTensor([target_speaker_id]).to(self.dev)
|
328 |
+
audio = self.net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][
|
329 |
0, 0].data.cpu().float().numpy()
|
330 |
del y, spec, spec_lengths, sid_src, sid_tgt
|
331 |
+
return "Success", (self.hps.data.sampling_rate, audio)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
332 |
|
333 |
+
def infer(self, text ,language, speaker_id,n_scale= 0.667,n_scale_w = 0.8, l_scale = 1):
|
334 |
+
try:
|
335 |
+
speaker_id = int(self.selection(speaker_id))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
t1 = time.time()
|
337 |
+
stn_tst = self.get_text(self.sle(language,text))
|
338 |
with torch.no_grad():
|
339 |
+
x_tst = stn_tst.unsqueeze(0).to(self.dev)
|
340 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(self.dev)
|
341 |
+
sid = torch.LongTensor([speaker_id]).to(self.dev)
|
342 |
+
audio = self.net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=n_scale, noise_scale_w=n_scale_w, length_scale=l_scale)[0][0,0].data.cpu().float().numpy()
|
343 |
t2 = time.time()
|
344 |
spending_time = "推理时间为:"+str(t2-t1)+"s"
|
345 |
print(spending_time)
|
346 |
+
return (self.hps.data.sampling_rate, audio)
|
347 |
+
except:
|
348 |
+
self.hps = utils.get_hparams_from_file(f"checkpoints/biaobei/config.json")
|
349 |
+
self.net_g = SynthesizerTrn(
|
350 |
+
len(symbols),
|
351 |
+
self.hps.data.filter_length // 2 + 1,
|
352 |
+
self.hps.train.segment_size // self.hps.data.hop_length,
|
353 |
+
n_speakers=self.hps.data.n_speakers,
|
354 |
+
**self.hps.model).to(self.dev)
|
355 |
+
_ = self.net_g.eval()
|
356 |
+
_ = utils.load_checkpoint(f"checkpoints/biaobei/model.pth", self.net_g)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
|
358 |
+
def infer2(self, text ,language, speaker_id,n_scale= 0.667,n_scale_w = 0.8, l_scale = 1):
|
359 |
+
speaker_id = int(self.selection(speaker_id))
|
360 |
+
a = ['【','[','(','(']
|
361 |
+
b = ['】',']',')',')']
|
362 |
+
for i in a:
|
363 |
+
text = text.replace(i,'<')
|
364 |
+
for i in b:
|
365 |
+
text = text.replace(i,'>')
|
366 |
+
final_list = self.extrac(text.replace('“','').replace('”',''))
|
367 |
+
audio_fin = []
|
368 |
+
c = 0
|
369 |
+
t = datetime.timedelta(seconds=0)
|
370 |
+
f1 = open("subtitles.srt",'w',encoding='utf-8')
|
371 |
+
for sentence in final_list:
|
372 |
+
c +=1
|
373 |
+
stn_tst = self.get_text(self.sle(language,sentence))
|
374 |
+
with torch.no_grad():
|
375 |
+
x_tst = stn_tst.unsqueeze(0).to(self.dev)
|
376 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(self.dev)
|
377 |
+
sid = torch.LongTensor([speaker_id]).to(self.dev)
|
378 |
+
t1 = time.time()
|
379 |
+
audio = self.net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=n_scale, noise_scale_w=n_scale_w, length_scale=l_scale)[0][0,0].data.cpu().float().numpy()
|
380 |
+
t2 = time.time()
|
381 |
+
spending_time = "第"+str(c)+"句的推理时间为:"+str(t2-t1)+"s"
|
382 |
+
print(spending_time)
|
383 |
+
time_start = str(t).split(".")[0] + "," + str(t.microseconds)[:3]
|
384 |
+
last_time = datetime.timedelta(seconds=len(audio)/float(22050))
|
385 |
+
t+=last_time
|
386 |
+
time_end = str(t).split(".")[0] + "," + str(t.microseconds)[:3]
|
387 |
+
print(time_end)
|
388 |
+
f1.write(str(c-1)+'\n'+time_start+' --> '+time_end+'\n'+sentence+'\n\n')
|
389 |
+
audio_fin.append(audio)
|
390 |
+
file_path = "subtitles.srt"
|
391 |
+
return (self.hps.data.sampling_rate, np.concatenate(audio_fin)),file_path
|
392 |
+
print("开始部署")
|
393 |
+
grVits = VitsGradio()
|
394 |
+
grVits.Vits.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|