Spaces:
Running
Running
Commit
·
994e4b7
1
Parent(s):
e829f7e
Update server.py
Browse files
server.py
CHANGED
@@ -1,25 +1,72 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import torch
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
|
|
6 |
import commons
|
|
|
|
|
|
|
7 |
import utils
|
|
|
8 |
from models import SynthesizerTrn
|
9 |
from text.symbols import symbols
|
10 |
-
|
11 |
-
from text.cleaner import clean_text
|
12 |
-
from scipy.io import wavfile
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
|
|
|
18 |
|
19 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
norm_text, phone, tone, word2ph = clean_text(text, language_str)
|
21 |
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
|
22 |
-
|
23 |
if hps.data.add_blank:
|
24 |
phone = commons.intersperse(phone, 0)
|
25 |
tone = commons.intersperse(tone, 0)
|
@@ -27,38 +74,83 @@ def get_text(text, language_str, hps):
|
|
27 |
for i in range(len(word2ph)):
|
28 |
word2ph[i] = word2ph[i] * 2
|
29 |
word2ph[0] += 1
|
30 |
-
|
31 |
del word2ph
|
32 |
-
assert
|
33 |
|
34 |
if language_str == "ZH":
|
35 |
-
bert =
|
36 |
-
ja_bert = torch.zeros(
|
37 |
-
|
38 |
-
|
39 |
bert = torch.zeros(1024, len(phone))
|
40 |
-
|
|
|
|
|
41 |
bert = torch.zeros(1024, len(phone))
|
42 |
-
ja_bert = torch.zeros(
|
|
|
|
|
|
|
|
|
43 |
assert bert.shape[-1] == len(
|
44 |
phone
|
45 |
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
|
|
|
46 |
phone = torch.LongTensor(phone)
|
47 |
tone = torch.LongTensor(tone)
|
48 |
language = torch.LongTensor(language)
|
49 |
-
return bert, ja_bert, phone, tone, language
|
50 |
|
|
|
51 |
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
with torch.no_grad():
|
55 |
-
x_tst = phones.to(
|
56 |
-
tones = tones.to(
|
57 |
-
lang_ids = lang_ids.to(
|
58 |
-
bert = bert.to(
|
59 |
ja_bert = ja_bert.to(device).unsqueeze(0)
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
62 |
audio = (
|
63 |
net_g.infer(
|
64 |
x_tst,
|
@@ -68,6 +160,8 @@ def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, langua
|
|
68 |
lang_ids,
|
69 |
bert,
|
70 |
ja_bert,
|
|
|
|
|
71 |
sdp_ratio=sdp_ratio,
|
72 |
noise_scale=noise_scale,
|
73 |
noise_scale_w=noise_scale_w,
|
@@ -77,94 +171,59 @@ def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, langua
|
|
77 |
.float()
|
78 |
.numpy()
|
79 |
)
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
ostream = out.add_stream(format)
|
97 |
-
|
98 |
-
for frame in inp.decode(audio=0):
|
99 |
-
for p in ostream.encode(frame):
|
100 |
-
out.mux(p)
|
101 |
-
|
102 |
-
for p in ostream.encode(None):
|
103 |
-
out.mux(p)
|
104 |
-
|
105 |
-
out.close()
|
106 |
-
inp.close()
|
107 |
-
|
108 |
-
|
109 |
-
# Load Generator
|
110 |
-
hps = utils.get_hparams_from_file("./configs/config.json")
|
111 |
-
|
112 |
-
dev = "cuda"
|
113 |
-
net_g = SynthesizerTrn(
|
114 |
-
len(symbols),
|
115 |
-
hps.data.filter_length // 2 + 1,
|
116 |
-
hps.train.segment_size // hps.data.hop_length,
|
117 |
-
n_speakers=hps.data.n_speakers,
|
118 |
-
**hps.model,
|
119 |
-
).to(dev)
|
120 |
-
_ = net_g.eval()
|
121 |
-
|
122 |
-
_ = utils.load_checkpoint("logs/G_649000.pth", net_g, None, skip_optimizer=True)
|
123 |
-
|
124 |
-
|
125 |
-
@app.route("/")
|
126 |
-
def main():
|
127 |
-
try:
|
128 |
-
speaker = request.args.get("speaker")
|
129 |
-
text = request.args.get("text").replace("/n", "")
|
130 |
-
sdp_ratio = float(request.args.get("sdp_ratio", 0.2))
|
131 |
-
noise = float(request.args.get("noise", 0.5))
|
132 |
-
noisew = float(request.args.get("noisew", 0.6))
|
133 |
-
length = float(request.args.get("length", 1.2))
|
134 |
-
language = request.args.get("language")
|
135 |
-
if length >= 2:
|
136 |
-
return "Too big length"
|
137 |
-
if len(text) >= 250:
|
138 |
-
return "Too long text"
|
139 |
-
fmt = request.args.get("format", "wav")
|
140 |
-
if None in (speaker, text):
|
141 |
-
return "Missing Parameter"
|
142 |
-
if fmt not in ("mp3", "wav", "ogg"):
|
143 |
-
return "Invalid Format"
|
144 |
-
if language not in ("JA", "ZH"):
|
145 |
-
return "Invalid language"
|
146 |
-
except:
|
147 |
-
return "Invalid Parameter"
|
148 |
-
|
149 |
-
with torch.no_grad():
|
150 |
-
audio = infer(
|
151 |
-
text,
|
152 |
-
sdp_ratio=sdp_ratio,
|
153 |
-
noise_scale=noise,
|
154 |
-
noise_scale_w=noisew,
|
155 |
-
length_scale=length,
|
156 |
-
sid=speaker,
|
157 |
-
language=language,
|
158 |
-
)
|
159 |
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import logging
|
6 |
+
import re_matching
|
7 |
+
|
8 |
+
from flask import Flask, request, jsonify
|
9 |
+
from flask_cors import CORS
|
10 |
+
|
11 |
+
logging.getLogger("numba").setLevel(logging.WARNING)
|
12 |
+
logging.getLogger("markdown_it").setLevel(logging.WARNING)
|
13 |
+
logging.getLogger("urllib3").setLevel(logging.WARNING)
|
14 |
+
logging.getLogger("matplotlib").setLevel(logging.WARNING)
|
15 |
+
|
16 |
+
logging.basicConfig(
|
17 |
+
level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
|
18 |
+
)
|
19 |
+
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
import librosa
|
22 |
+
import numpy as np
|
23 |
import torch
|
24 |
+
import torch.nn as nn
|
25 |
+
from torch.utils.data import Dataset
|
26 |
+
from torch.utils.data import DataLoader, Dataset
|
27 |
+
from tqdm import tqdm
|
28 |
+
from transformers import Wav2Vec2Processor
|
29 |
+
from transformers.models.wav2vec2.modeling_wav2vec2 import (
|
30 |
+
Wav2Vec2Model,
|
31 |
+
Wav2Vec2PreTrainedModel,
|
32 |
+
)
|
33 |
+
|
34 |
+
import utils
|
35 |
+
from config import config
|
36 |
|
37 |
+
import torch
|
38 |
import commons
|
39 |
+
from text import cleaned_text_to_sequence, get_bert
|
40 |
+
from emo_gen import process_func, EmotionModel, Wav2Vec2Processor, Wav2Vec2Model, Wav2Vec2PreTrainedModel, RegressionHead
|
41 |
+
from text.cleaner import clean_text
|
42 |
import utils
|
43 |
+
|
44 |
from models import SynthesizerTrn
|
45 |
from text.symbols import symbols
|
46 |
+
import sys
|
|
|
|
|
47 |
|
48 |
+
from scipy.io.wavfile import write
|
49 |
+
|
50 |
+
net_g = None
|
51 |
|
52 |
+
device = 'cpu'
|
53 |
|
54 |
+
def get_net_g(model_path: str, version: str, device: str, hps):
|
55 |
+
net_g = SynthesizerTrn(
|
56 |
+
len(symbols),
|
57 |
+
hps.data.filter_length // 2 + 1,
|
58 |
+
hps.train.segment_size // hps.data.hop_length,
|
59 |
+
n_speakers=hps.data.n_speakers,
|
60 |
+
**hps.model,
|
61 |
+
).to(device)
|
62 |
+
_ = net_g.eval()
|
63 |
+
_ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
|
64 |
+
return net_g
|
65 |
+
|
66 |
+
def get_text(text, language_str, hps, device):
|
67 |
norm_text, phone, tone, word2ph = clean_text(text, language_str)
|
68 |
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
|
69 |
+
#print(text)
|
70 |
if hps.data.add_blank:
|
71 |
phone = commons.intersperse(phone, 0)
|
72 |
tone = commons.intersperse(tone, 0)
|
|
|
74 |
for i in range(len(word2ph)):
|
75 |
word2ph[i] = word2ph[i] * 2
|
76 |
word2ph[0] += 1
|
77 |
+
bert_ori = get_bert(norm_text, word2ph, language_str, device)
|
78 |
del word2ph
|
79 |
+
assert bert_ori.shape[-1] == len(phone), phone
|
80 |
|
81 |
if language_str == "ZH":
|
82 |
+
bert = bert_ori
|
83 |
+
ja_bert = torch.zeros(1024, len(phone))
|
84 |
+
en_bert = torch.zeros(1024, len(phone))
|
85 |
+
elif language_str == "JP":
|
86 |
bert = torch.zeros(1024, len(phone))
|
87 |
+
ja_bert = bert_ori
|
88 |
+
en_bert = torch.zeros(1024, len(phone))
|
89 |
+
elif language_str == "EN":
|
90 |
bert = torch.zeros(1024, len(phone))
|
91 |
+
ja_bert = torch.zeros(1024, len(phone))
|
92 |
+
en_bert = bert_ori
|
93 |
+
else:
|
94 |
+
raise ValueError("language_str should be ZH, JP or EN")
|
95 |
+
|
96 |
assert bert.shape[-1] == len(
|
97 |
phone
|
98 |
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
|
99 |
+
|
100 |
phone = torch.LongTensor(phone)
|
101 |
tone = torch.LongTensor(tone)
|
102 |
language = torch.LongTensor(language)
|
103 |
+
return bert, ja_bert, en_bert, phone, tone, language
|
104 |
|
105 |
+
def get_emo_(reference_audio, emotion):
|
106 |
|
107 |
+
if (emotion == 10 and reference_audio):
|
108 |
+
emo = torch.from_numpy(get_emo(reference_audio))
|
109 |
+
else:
|
110 |
+
emo = torch.Tensor([emotion])
|
111 |
+
|
112 |
+
return emo
|
113 |
+
|
114 |
+
def get_emo(path):
|
115 |
+
wav, sr = librosa.load(path, 16000)
|
116 |
+
device = config.bert_gen_config.device
|
117 |
+
return process_func(
|
118 |
+
np.expand_dims(wav, 0).astype(np.float64),
|
119 |
+
sr,
|
120 |
+
emotional_model,
|
121 |
+
emotional_processor,
|
122 |
+
device,
|
123 |
+
embeddings=True,
|
124 |
+
).squeeze(0)
|
125 |
+
|
126 |
+
def infer(
|
127 |
+
text,
|
128 |
+
sdp_ratio,
|
129 |
+
noise_scale,
|
130 |
+
noise_scale_w,
|
131 |
+
length_scale,
|
132 |
+
sid,
|
133 |
+
reference_audio=None,
|
134 |
+
emotion=0,
|
135 |
+
):
|
136 |
+
|
137 |
+
language= 'JP' if is_japanese(text) else 'ZH'
|
138 |
+
bert, ja_bert, en_bert, phones, tones, lang_ids = get_text(
|
139 |
+
text, language, hps, device
|
140 |
+
)
|
141 |
+
emo = get_emo_(reference_audio, emotion)
|
142 |
with torch.no_grad():
|
143 |
+
x_tst = phones.to(device).unsqueeze(0)
|
144 |
+
tones = tones.to(device).unsqueeze(0)
|
145 |
+
lang_ids = lang_ids.to(device).unsqueeze(0)
|
146 |
+
bert = bert.to(device).unsqueeze(0)
|
147 |
ja_bert = ja_bert.to(device).unsqueeze(0)
|
148 |
+
en_bert = en_bert.to(device).unsqueeze(0)
|
149 |
+
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
|
150 |
+
emo = emo.to(device).unsqueeze(0)
|
151 |
+
print(emo)
|
152 |
+
del phones
|
153 |
+
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
|
154 |
audio = (
|
155 |
net_g.infer(
|
156 |
x_tst,
|
|
|
160 |
lang_ids,
|
161 |
bert,
|
162 |
ja_bert,
|
163 |
+
en_bert,
|
164 |
+
emo,
|
165 |
sdp_ratio=sdp_ratio,
|
166 |
noise_scale=noise_scale,
|
167 |
noise_scale_w=noise_scale_w,
|
|
|
171 |
.float()
|
172 |
.numpy()
|
173 |
)
|
174 |
+
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers, ja_bert, en_bert, emo
|
175 |
+
if torch.cuda.is_available():
|
176 |
+
torch.cuda.empty_cache()
|
177 |
+
write("temp.wav", 44100, audio)
|
178 |
+
return 'success'
|
179 |
+
|
180 |
+
def is_japanese(string):
|
181 |
+
for ch in string:
|
182 |
+
if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
|
183 |
+
return True
|
184 |
+
return False
|
185 |
+
|
186 |
+
def loadmodel(model):
|
187 |
+
_ = net_g.eval()
|
188 |
+
_ = utils.load_checkpoint(model, net_g, None, skip_optimizer=True)
|
189 |
+
return "success"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
+
app = Flask(__name__)
|
192 |
+
CORS(app)
|
193 |
+
@app.route('/tts')
|
194 |
+
|
195 |
+
def tts():
|
196 |
+
# 这些没必要改
|
197 |
+
speaker = request.args.get('speaker')
|
198 |
+
sdp_ratio = float(request.args.get('sdp_ratio', 0.2))
|
199 |
+
noise_scale = float(request.args.get('noise_scale', 0.6))
|
200 |
+
noise_scale_w = float(request.args.get('noise_scale_w', 0.8))
|
201 |
+
length_scale = float(request.args.get('length_scale', 1))
|
202 |
+
text = request.args.get('text')
|
203 |
+
status = infer(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale,sid = speaker, reference_audio=None, emotion=0)
|
204 |
+
with open('temp.wav','rb') as bit:
|
205 |
+
wav_bytes = bit.read()
|
206 |
+
|
207 |
+
headers = {
|
208 |
+
'Content-Type': 'audio/wav',
|
209 |
+
'Text': status.encode('utf-8')}
|
210 |
+
return wav_bytes, 200, headers
|
211 |
+
|
212 |
+
|
213 |
+
if __name__ == "__main__":
|
214 |
+
emotional_model_name = "./emotional/wav2vec2-large-robust-12-ft-emotion-msp-dim"
|
215 |
+
REPO_ID = "audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim"
|
216 |
+
emotional_processor = Wav2Vec2Processor.from_pretrained(emotional_model_name)
|
217 |
+
emotional_model = EmotionModel.from_pretrained(emotional_model_name).to(device)
|
218 |
+
languages = [ "Auto", "ZH", "JP"]
|
219 |
+
modelPaths = []
|
220 |
+
for dirpath, dirnames, filenames in os.walk("Data/Bushiroad/models/"):
|
221 |
+
for filename in filenames:
|
222 |
+
modelPaths.append(os.path.join(dirpath, filename))
|
223 |
+
hps = utils.get_hparams_from_file('Data/Bushiroad/configs/config.json')
|
224 |
+
net_g = get_net_g(
|
225 |
+
model_path=modelPaths[-1], version="2.1", device=device, hps=hps
|
226 |
+
)
|
227 |
+
speaker_ids = hps.data.spk2id
|
228 |
+
speakers = list(speaker_ids.keys())
|
229 |
+
app.run(host="0.0.0.0", port=5000)
|