File size: 13,086 Bytes
7e680fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import math
import torch
from torch import nn
from torch.nn import functional as F

from torch.nn import Conv1d
from torch.nn.utils import weight_norm, remove_weight_norm

import commons
from commons import init_weights, get_padding
from transforms import piecewise_rational_quadratic_transform


LRELU_SLOPE = 0.1


class LayerNorm(nn.Module):
  def __init__(self, channels, eps=1e-5):
    super().__init__()
    self.channels = channels
    self.eps = eps

    self.gamma = nn.Parameter(torch.ones(channels))
    self.beta = nn.Parameter(torch.zeros(channels))

  def forward(self, x):
    x = x.transpose(1, -1)
    x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
    return x.transpose(1, -1)

 
class ConvReluNorm(nn.Module):
  def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
    super().__init__()
    self.in_channels = in_channels
    self.hidden_channels = hidden_channels
    self.out_channels = out_channels
    self.kernel_size = kernel_size
    self.n_layers = n_layers
    self.p_dropout = p_dropout
    assert n_layers > 1, "Number of layers should be larger than 0."

    self.conv_layers = nn.ModuleList()
    self.norm_layers = nn.ModuleList()
    self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
    self.norm_layers.append(LayerNorm(hidden_channels))
    self.relu_drop = nn.Sequential(
        nn.ReLU(),
        nn.Dropout(p_dropout))
    for _ in range(n_layers-1):
      self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
      self.norm_layers.append(LayerNorm(hidden_channels))
    self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
    self.proj.weight.data.zero_()
    self.proj.bias.data.zero_()

  def forward(self, x, x_mask):
    x_org = x
    for i in range(self.n_layers):
      x = self.conv_layers[i](x * x_mask)
      x = self.norm_layers[i](x)
      x = self.relu_drop(x)
    x = x_org + self.proj(x)
    return x * x_mask


class DDSConv(nn.Module):
  """
  Dialted and Depth-Separable Convolution
  """
  def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
    super().__init__()
    self.channels = channels
    self.kernel_size = kernel_size
    self.n_layers = n_layers
    self.p_dropout = p_dropout

    self.drop = nn.Dropout(p_dropout)
    self.convs_sep = nn.ModuleList()
    self.convs_1x1 = nn.ModuleList()
    self.norms_1 = nn.ModuleList()
    self.norms_2 = nn.ModuleList()
    for i in range(n_layers):
      dilation = kernel_size ** i
      padding = (kernel_size * dilation - dilation) // 2
      self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size, 
          groups=channels, dilation=dilation, padding=padding
      ))
      self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
      self.norms_1.append(LayerNorm(channels))
      self.norms_2.append(LayerNorm(channels))

  def forward(self, x, x_mask, g=None):
    if g is not None:
      x = x + g
    for i in range(self.n_layers):
      y = self.convs_sep[i](x * x_mask)
      y = self.norms_1[i](y)
      y = F.gelu(y)
      y = self.convs_1x1[i](y)
      y = self.norms_2[i](y)
      y = F.gelu(y)
      y = self.drop(y)
      x = x + y
    return x * x_mask


class WN(torch.nn.Module):
  def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
    super(WN, self).__init__()
    assert(kernel_size % 2 == 1)
    self.hidden_channels =hidden_channels
    self.kernel_size = kernel_size,
    self.dilation_rate = dilation_rate
    self.n_layers = n_layers
    self.gin_channels = gin_channels
    self.p_dropout = p_dropout

    self.in_layers = torch.nn.ModuleList()
    self.res_skip_layers = torch.nn.ModuleList()
    self.drop = nn.Dropout(p_dropout)

    if gin_channels != 0:
      cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
      self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')

    for i in range(n_layers):
      dilation = dilation_rate ** i
      padding = int((kernel_size * dilation - dilation) / 2)
      in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
                                 dilation=dilation, padding=padding)
      in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
      self.in_layers.append(in_layer)

      # last one is not necessary
      if i < n_layers - 1:
        res_skip_channels = 2 * hidden_channels
      else:
        res_skip_channels = hidden_channels

      res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
      res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
      self.res_skip_layers.append(res_skip_layer)

  def forward(self, x, x_mask, g=None, **kwargs):
    output = torch.zeros_like(x)
    n_channels_tensor = torch.IntTensor([self.hidden_channels])

    if g is not None:
      g = self.cond_layer(g)

    for i in range(self.n_layers):
      x_in = self.in_layers[i](x)
      if g is not None:
        cond_offset = i * 2 * self.hidden_channels
        g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
      else:
        g_l = torch.zeros_like(x_in)

      acts = commons.fused_add_tanh_sigmoid_multiply(
          x_in,
          g_l,
          n_channels_tensor)
      acts = self.drop(acts)

      res_skip_acts = self.res_skip_layers[i](acts)
      if i < self.n_layers - 1:
        res_acts = res_skip_acts[:,:self.hidden_channels,:]
        x = (x + res_acts) * x_mask
        output = output + res_skip_acts[:,self.hidden_channels:,:]
      else:
        output = output + res_skip_acts
    return output * x_mask

  def remove_weight_norm(self):
    if self.gin_channels != 0:
      torch.nn.utils.remove_weight_norm(self.cond_layer)
    for l in self.in_layers:
      torch.nn.utils.remove_weight_norm(l)
    for l in self.res_skip_layers:
     torch.nn.utils.remove_weight_norm(l)


class ResBlock1(torch.nn.Module):
    def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
        super(ResBlock1, self).__init__()
        self.convs1 = nn.ModuleList([
            weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
                               padding=get_padding(kernel_size, dilation[0]))),
            weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
                               padding=get_padding(kernel_size, dilation[1]))),
            weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
                               padding=get_padding(kernel_size, dilation[2])))
        ])
        self.convs1.apply(init_weights)

        self.convs2 = nn.ModuleList([
            weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
                               padding=get_padding(kernel_size, 1))),
            weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
                               padding=get_padding(kernel_size, 1))),
            weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
                               padding=get_padding(kernel_size, 1)))
        ])
        self.convs2.apply(init_weights)

    def forward(self, x, x_mask=None):
        for c1, c2 in zip(self.convs1, self.convs2):
            xt = F.leaky_relu(x, LRELU_SLOPE)
            if x_mask is not None:
                xt = xt * x_mask
            xt = c1(xt)
            xt = F.leaky_relu(xt, LRELU_SLOPE)
            if x_mask is not None:
                xt = xt * x_mask
            xt = c2(xt)
            x = xt + x
        if x_mask is not None:
            x = x * x_mask
        return x

    def remove_weight_norm(self):
        for l in self.convs1:
            remove_weight_norm(l)
        for l in self.convs2:
            remove_weight_norm(l)


class ResBlock2(torch.nn.Module):
    def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
        super(ResBlock2, self).__init__()
        self.convs = nn.ModuleList([
            weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
                               padding=get_padding(kernel_size, dilation[0]))),
            weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
                               padding=get_padding(kernel_size, dilation[1])))
        ])
        self.convs.apply(init_weights)

    def forward(self, x, x_mask=None):
        for c in self.convs:
            xt = F.leaky_relu(x, LRELU_SLOPE)
            if x_mask is not None:
                xt = xt * x_mask
            xt = c(xt)
            x = xt + x
        if x_mask is not None:
            x = x * x_mask
        return x

    def remove_weight_norm(self):
        for l in self.convs:
            remove_weight_norm(l)


class Log(nn.Module):
  def forward(self, x, x_mask, reverse=False, **kwargs):
    if not reverse:
      y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
      logdet = torch.sum(-y, [1, 2])
      return y, logdet
    else:
      x = torch.exp(x) * x_mask
      return x
    

class Flip(nn.Module):
  def forward(self, x, *args, reverse=False, **kwargs):
    x = torch.flip(x, [1])
    if not reverse:
      logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
      return x, logdet
    else:
      return x


class ElementwiseAffine(nn.Module):
  def __init__(self, channels):
    super().__init__()
    self.channels = channels
    self.m = nn.Parameter(torch.zeros(channels,1))
    self.logs = nn.Parameter(torch.zeros(channels,1))

  def forward(self, x, x_mask, reverse=False, **kwargs):
    if not reverse:
      y = self.m + torch.exp(self.logs) * x
      y = y * x_mask
      logdet = torch.sum(self.logs * x_mask, [1,2])
      return y, logdet
    else:
      x = (x - self.m) * torch.exp(-self.logs) * x_mask
      return x


class ResidualCouplingLayer(nn.Module):
  def __init__(self,
      channels,
      hidden_channels,
      kernel_size,
      dilation_rate,
      n_layers,
      p_dropout=0,
      gin_channels=0,
      mean_only=False):
    assert channels % 2 == 0, "channels should be divisible by 2"
    super().__init__()
    self.channels = channels
    self.hidden_channels = hidden_channels
    self.kernel_size = kernel_size
    self.dilation_rate = dilation_rate
    self.n_layers = n_layers
    self.half_channels = channels // 2
    self.mean_only = mean_only

    self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
    self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
    self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
    self.post.weight.data.zero_()
    self.post.bias.data.zero_()

  def forward(self, x, x_mask, g=None, reverse=False):
    x0, x1 = torch.split(x, [self.half_channels]*2, 1)
    h = self.pre(x0) * x_mask
    h = self.enc(h, x_mask, g=g)
    stats = self.post(h) * x_mask
    if not self.mean_only:
      m, logs = torch.split(stats, [self.half_channels]*2, 1)
    else:
      m = stats
      logs = torch.zeros_like(m)

    if not reverse:
      x1 = m + x1 * torch.exp(logs) * x_mask
      x = torch.cat([x0, x1], 1)
      logdet = torch.sum(logs, [1,2])
      return x, logdet
    else:
      x1 = (x1 - m) * torch.exp(-logs) * x_mask
      x = torch.cat([x0, x1], 1)
      return x


class ConvFlow(nn.Module):
  def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
    super().__init__()
    self.in_channels = in_channels
    self.filter_channels = filter_channels
    self.kernel_size = kernel_size
    self.n_layers = n_layers
    self.num_bins = num_bins
    self.tail_bound = tail_bound
    self.half_channels = in_channels // 2

    self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
    self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
    self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
    self.proj.weight.data.zero_()
    self.proj.bias.data.zero_()

  def forward(self, x, x_mask, g=None, reverse=False):
    x0, x1 = torch.split(x, [self.half_channels]*2, 1)
    h = self.pre(x0)
    h = self.convs(h, x_mask, g=g)
    h = self.proj(h) * x_mask

    b, c, t = x0.shape
    h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]

    unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
    unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
    unnormalized_derivatives = h[..., 2 * self.num_bins:]

    x1, logabsdet = piecewise_rational_quadratic_transform(x1,
        unnormalized_widths,
        unnormalized_heights,
        unnormalized_derivatives,
        inverse=reverse,
        tails='linear',
        tail_bound=self.tail_bound
    )

    x = torch.cat([x0, x1], 1) * x_mask
    logdet = torch.sum(logabsdet * x_mask, [1,2])
    if not reverse:
        return x, logdet
    else:
        return x