Spaces:
Sleeping
Sleeping
import re | |
import gradio as gr | |
import torch | |
import unicodedata | |
import commons | |
import utils | |
import pathlib | |
from models import SynthesizerTrn | |
from text import text_to_sequence | |
import time | |
import os | |
import io | |
from scipy.io.wavfile import write | |
from flask import Flask, request | |
from threading import Thread | |
import openai | |
import requests | |
import json | |
import soundfile as sf | |
from scipy import signal | |
class VitsGradio: | |
def __init__(self): | |
self.lan = ["中文","日文","自动"] | |
self.chatapi = ["gpt-3.5-turbo","gpt3"] | |
self.modelPaths = [] | |
for root,dirs,files in os.walk("checkpoints"): | |
for dir in dirs: | |
self.modelPaths.append(dir) | |
with gr.Blocks() as self.Vits: | |
with gr.Tab("调试用"): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
self.text = gr.TextArea(label="Text", value="你好") | |
with gr.Accordion(label="测试api", open=False): | |
self.local_chat1 = gr.Checkbox(value=False, label="使用网址+文本进行模拟") | |
self.url_input = gr.TextArea(label="键入测试", value="http://127.0.0.1:8080/chat?Text=") | |
butto = gr.Button("模拟前端抓取语音文件") | |
btnVC = gr.Button("测试tts+对话程序") | |
with gr.Column(): | |
output2 = gr.TextArea(label="回复") | |
output1 = gr.Audio(label="采样率22050") | |
output3 = gr.outputs.File(label="44100hz: output.wav") | |
butto.click(self.Simul, inputs=[self.text, self.url_input], outputs=[output2,output3]) | |
btnVC.click(self.tts_fn, inputs=[self.text], outputs=[output1,output2]) | |
with gr.Tab("控制面板"): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
self.api_input1 = gr.TextArea(label="输入gpt/茉莉云的api-key或本地存储说话模型的路径.如果要用茉莉云则用'|'隔开key和密码", value="49eig5nu3rllvg6e|itcn9760") | |
with gr.Accordion(label="chatbot选择(默认gpt3.5)", open=False): | |
self.api_input2 = gr.Checkbox(value=False, label="茉莉云") | |
self.local_chat1 = gr.Checkbox(value=False, label="启动本地chatbot") | |
self.local_chat2 = gr.Checkbox(value=False, label="是否量化") | |
res = gr.TextArea() | |
Botselection = gr.Button("完成chatbot设定") | |
Botselection.click(self.check_bot, inputs=[self.api_input1,self.api_input2,self.local_chat1,self.local_chat2], outputs = [res]) | |
self.input1 = gr.Dropdown(label = "模型", choices = self.modelPaths, value = self.modelPaths[0], type = "value") | |
self.input2 = gr.Dropdown(label="Language", choices=self.lan, value="自动", interactive=True) | |
with gr.Column(): | |
btnVC = gr.Button("完成vits TTS端设定") | |
self.input3 = gr.Dropdown(label="Speaker", choices=list(range(1001)), value=0, interactive=True) | |
self.input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.6) | |
self.input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.667) | |
self.input6 = gr.Slider(minimum=0.1, maximum=10, label="duration", value=1) | |
statusa = gr.TextArea() | |
btnVC.click(self.create_tts_fn, inputs=[self.input1, self.input2, self.input3, self.input4, self.input5, self.input6], outputs = [statusa]) | |
def Simul(self,text,url_input): | |
web = url_input + text | |
res = requests.get(web) | |
music = res.content | |
with open('output.wav', 'wb') as code: | |
code.write(music) | |
file_path = "output.wav" | |
return web,file_path | |
def mori(self,text): | |
import http.client | |
conn = http.client.HTTPSConnection("api.mlyai.com") | |
payload = json.dumps({ | |
"content": text, | |
"type": 1, | |
"from": "123456", | |
"fromName": "侑" | |
}) | |
headers = { | |
'Api-Key': self.api_key, | |
'Api-Secret': self.api_secret, | |
'Content-Type': 'application/json' | |
} | |
conn.request("POST", "/reply", payload, headers) | |
res = conn.getresponse() | |
data = res.read() | |
decoded_data = json.loads(data.decode("utf-8")) | |
if decoded_data["code"] == "00000": | |
answer = decoded_data["data"][0]["content"] | |
if text == 'exit': | |
conn.close() | |
return answer | |
else: | |
conn.close() | |
return '对不起,做不到' | |
def chatgpt(self,text): | |
self.messages.append({"role": "user", "content": text},) | |
chat = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages= self.messages) | |
reply = chat.choices[0].message.content | |
return reply | |
def ChATGLM(self,text): | |
if text == 'clear': | |
self.history = [] | |
response, new_history = self.model.chat(self.tokenizer, text, self.history) | |
response = response.replace(" ",'').replace("\n",'.') | |
self.history = new_history | |
return response | |
def gpt3_chat(self,text): | |
call_name = "Waifu" | |
openai.api_key = args.key | |
identity = "" | |
start_sequence = '\n'+str(call_name)+':' | |
restart_sequence = "\nYou: " | |
if 1 == 1: | |
prompt0 = text #当期prompt | |
if text == 'quit': | |
return prompt0 | |
prompt = identity + prompt0 + start_sequence | |
response = openai.Completion.create( | |
model="text-davinci-003", | |
prompt=prompt, | |
temperature=0.5, | |
max_tokens=1000, | |
top_p=1.0, | |
frequency_penalty=0.5, | |
presence_penalty=0.0, | |
stop=["\nYou:"] | |
) | |
return response['choices'][0]['text'].strip() | |
def check_bot(self,api_input1,api_input2,local_chat1,local_chat2): | |
try: | |
self.api_key, self.api_secret = api_input1.split("|") | |
except: | |
pass | |
if local_chat1: | |
from transformers import AutoTokenizer, AutoModel | |
self.tokenizer = AutoTokenizer.from_pretrained(api_input1, trust_remote_code=True) | |
if local_chat2: | |
self.model = AutoModel.from_pretrained(api_input1, trust_remote_code=True).half().quantize(4).cuda() | |
else: | |
self.model = AutoModel.from_pretrained(api_input1, trust_remote_code=True) | |
self.history = [] | |
else: | |
try: | |
self.messages = [] | |
openai.api_key = api_input1 | |
except: | |
pass | |
return "Finished" | |
def is_japanese(self,string): | |
for ch in string: | |
if ord(ch) > 0x3040 and ord(ch) < 0x30FF: | |
return True | |
return False | |
def is_english(self,string): | |
import re | |
pattern = re.compile('^[A-Za-z0-9.,:;!?()_*"\' ]+$') | |
if pattern.fullmatch(string): | |
return True | |
else: | |
return False | |
def get_text(self,text, hps, cleaned=False): | |
if cleaned: | |
text_norm = text_to_sequence(text, self.hps_ms.symbols, []) | |
else: | |
text_norm = text_to_sequence(text, self.hps_ms.symbols, self.hps_ms.data.text_cleaners) | |
if self.hps_ms.data.add_blank: | |
text_norm = commons.intersperse(text_norm, 0) | |
text_norm = torch.LongTensor(text_norm) | |
return text_norm | |
def get_label(self,text, label): | |
if f'[{label}]' in text: | |
return True, text.replace(f'[{label}]', '') | |
else: | |
return False, text | |
def sle(self,language,text): | |
text = text.replace('\n','。').replace(' ',',') | |
if language == "中文": | |
tts_input1 = "[ZH]" + text + "[ZH]" | |
return tts_input1 | |
elif language == "自动": | |
tts_input1 = f"[JA]{text}[JA]" if self.is_japanese(text) else f"[ZH]{text}[ZH]" | |
return tts_input1 | |
elif language == "日文": | |
tts_input1 = "[JA]" + text + "[JA]" | |
return tts_input1 | |
def create_tts_fn(self,path, input2, input3, n_scale= 0.667,n_scale_w = 0.8, l_scale = 1 ): | |
self.language = input2 | |
self.speaker_id = int(input3) | |
self.n_scale = n_scale | |
self.n_scale_w = n_scale_w | |
self.l_scale = l_scale | |
self.dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
self.hps_ms = utils.get_hparams_from_file(f"checkpoints/{path}/config.json") | |
self.n_speakers = self.hps_ms.data.n_speakers if 'n_speakers' in self.hps_ms.data.keys() else 0 | |
self.n_symbols = len(self.hps_ms.symbols) if 'symbols' in self.hps_ms.keys() else 0 | |
self.net_g_ms = SynthesizerTrn( | |
self.n_symbols, | |
self.hps_ms.data.filter_length // 2 + 1, | |
self.hps_ms.train.segment_size // self.hps_ms.data.hop_length, | |
n_speakers=self.n_speakers, | |
**self.hps_ms.model).to(self.dev) | |
_ = self.net_g_ms.eval() | |
_ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", self.net_g_ms) | |
return 'success' | |
def tts_fn(self,text): | |
if self.local_chat1: | |
text = self.mori(text) | |
elif self.api_input2: | |
text = self.ChATGLM(text) | |
else: | |
text = text = self.chatgpt(text) | |
print(text) | |
text =self.sle(self.language,text) | |
with torch.no_grad(): | |
stn_tst = self.get_text(text, self.hps_ms, cleaned=False) | |
x_tst = stn_tst.unsqueeze(0).to(self.dev) | |
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(self.dev) | |
sid = torch.LongTensor([self.speaker_id]).to(self.dev) | |
audio = self.net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=self.n_scale, noise_scale_w=self.n_scale_w, length_scale=self.l_scale)[0][ | |
0, 0].data.cpu().float().numpy() | |
resampled_audio_data = signal.resample(audio, len(audio) * 2) | |
sf.write('temp.wav', resampled_audio_data, 44100, 'PCM_24') | |
return (self.hps_ms.data.sampling_rate, audio),text.replace('[JA]','').replace('[ZH]','') | |
app = Flask(__name__) | |
print("开始部署") | |
grVits = VitsGradio() | |
def text_api(): | |
message = request.args.get('Text','') | |
audio,text = grVits.tts_fn(message) | |
text = text.replace('[JA]','').replace('[ZH]','') | |
with open('temp.wav','rb') as bit: | |
wav_bytes = bit.read() | |
headers = { | |
'Content-Type': 'audio/wav', | |
'Text': text.encode('utf-8')} | |
return wav_bytes, 200, headers | |
def gradio_interface(): | |
return grVits.Vits.launch() | |
if __name__ == '__main__': | |
api_thread = Thread(target=app.run, args=("0.0.0.0", 8080)) | |
gradio_thread = Thread(target=gradio_interface) | |
api_thread.start() | |
gradio_thread.start() | |