vits-chatbot / app.py
Mahiruoshi's picture
Update app.py
98117dc
import re
import gradio as gr
import torch
import unicodedata
import commons
import utils
import pathlib
from models import SynthesizerTrn
from text import text_to_sequence
import time
import os
import io
from scipy.io.wavfile import write
from flask import Flask, request
from threading import Thread
import openai
import requests
import json
import soundfile as sf
from scipy import signal
class VitsGradio:
def __init__(self):
self.lan = ["中文","日文","自动"]
self.chatapi = ["gpt-3.5-turbo","gpt3"]
self.modelPaths = []
for root,dirs,files in os.walk("checkpoints"):
for dir in dirs:
self.modelPaths.append(dir)
with gr.Blocks() as self.Vits:
with gr.Tab("调试用"):
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
self.text = gr.TextArea(label="Text", value="你好")
with gr.Accordion(label="测试api", open=False):
self.local_chat1 = gr.Checkbox(value=False, label="使用网址+文本进行模拟")
self.url_input = gr.TextArea(label="键入测试", value="http://127.0.0.1:8080/chat?Text=")
butto = gr.Button("模拟前端抓取语音文件")
btnVC = gr.Button("测试tts+对话程序")
with gr.Column():
output2 = gr.TextArea(label="回复")
output1 = gr.Audio(label="采样率22050")
output3 = gr.outputs.File(label="44100hz: output.wav")
butto.click(self.Simul, inputs=[self.text, self.url_input], outputs=[output2,output3])
btnVC.click(self.tts_fn, inputs=[self.text], outputs=[output1,output2])
with gr.Tab("控制面板"):
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
self.api_input1 = gr.TextArea(label="输入gpt/茉莉云的api-key或本地存储说话模型的路径.如果要用茉莉云则用'|'隔开key和密码", value="49eig5nu3rllvg6e|itcn9760")
with gr.Accordion(label="chatbot选择(默认gpt3.5)", open=False):
self.api_input2 = gr.Checkbox(value=False, label="茉莉云")
self.local_chat1 = gr.Checkbox(value=False, label="启动本地chatbot")
self.local_chat2 = gr.Checkbox(value=False, label="是否量化")
res = gr.TextArea()
Botselection = gr.Button("完成chatbot设定")
Botselection.click(self.check_bot, inputs=[self.api_input1,self.api_input2,self.local_chat1,self.local_chat2], outputs = [res])
self.input1 = gr.Dropdown(label = "模型", choices = self.modelPaths, value = self.modelPaths[0], type = "value")
self.input2 = gr.Dropdown(label="Language", choices=self.lan, value="自动", interactive=True)
with gr.Column():
btnVC = gr.Button("完成vits TTS端设定")
self.input3 = gr.Dropdown(label="Speaker", choices=list(range(1001)), value=0, interactive=True)
self.input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.6)
self.input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.667)
self.input6 = gr.Slider(minimum=0.1, maximum=10, label="duration", value=1)
statusa = gr.TextArea()
btnVC.click(self.create_tts_fn, inputs=[self.input1, self.input2, self.input3, self.input4, self.input5, self.input6], outputs = [statusa])
def Simul(self,text,url_input):
web = url_input + text
res = requests.get(web)
music = res.content
with open('output.wav', 'wb') as code:
code.write(music)
file_path = "output.wav"
return web,file_path
def mori(self,text):
import http.client
conn = http.client.HTTPSConnection("api.mlyai.com")
payload = json.dumps({
"content": text,
"type": 1,
"from": "123456",
"fromName": "侑"
})
headers = {
'Api-Key': self.api_key,
'Api-Secret': self.api_secret,
'Content-Type': 'application/json'
}
conn.request("POST", "/reply", payload, headers)
res = conn.getresponse()
data = res.read()
decoded_data = json.loads(data.decode("utf-8"))
if decoded_data["code"] == "00000":
answer = decoded_data["data"][0]["content"]
if text == 'exit':
conn.close()
return answer
else:
conn.close()
return '对不起,做不到'
def chatgpt(self,text):
self.messages.append({"role": "user", "content": text},)
chat = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages= self.messages)
reply = chat.choices[0].message.content
return reply
def ChATGLM(self,text):
if text == 'clear':
self.history = []
response, new_history = self.model.chat(self.tokenizer, text, self.history)
response = response.replace(" ",'').replace("\n",'.')
self.history = new_history
return response
def gpt3_chat(self,text):
call_name = "Waifu"
openai.api_key = args.key
identity = ""
start_sequence = '\n'+str(call_name)+':'
restart_sequence = "\nYou: "
if 1 == 1:
prompt0 = text #当期prompt
if text == 'quit':
return prompt0
prompt = identity + prompt0 + start_sequence
response = openai.Completion.create(
model="text-davinci-003",
prompt=prompt,
temperature=0.5,
max_tokens=1000,
top_p=1.0,
frequency_penalty=0.5,
presence_penalty=0.0,
stop=["\nYou:"]
)
return response['choices'][0]['text'].strip()
def check_bot(self,api_input1,api_input2,local_chat1,local_chat2):
try:
self.api_key, self.api_secret = api_input1.split("|")
except:
pass
if local_chat1:
from transformers import AutoTokenizer, AutoModel
self.tokenizer = AutoTokenizer.from_pretrained(api_input1, trust_remote_code=True)
if local_chat2:
self.model = AutoModel.from_pretrained(api_input1, trust_remote_code=True).half().quantize(4).cuda()
else:
self.model = AutoModel.from_pretrained(api_input1, trust_remote_code=True)
self.history = []
else:
try:
self.messages = []
openai.api_key = api_input1
except:
pass
return "Finished"
def is_japanese(self,string):
for ch in string:
if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
return True
return False
def is_english(self,string):
import re
pattern = re.compile('^[A-Za-z0-9.,:;!?()_*"\' ]+$')
if pattern.fullmatch(string):
return True
else:
return False
def get_text(self,text, hps, cleaned=False):
if cleaned:
text_norm = text_to_sequence(text, self.hps_ms.symbols, [])
else:
text_norm = text_to_sequence(text, self.hps_ms.symbols, self.hps_ms.data.text_cleaners)
if self.hps_ms.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
def get_label(self,text, label):
if f'[{label}]' in text:
return True, text.replace(f'[{label}]', '')
else:
return False, text
def sle(self,language,text):
text = text.replace('\n','。').replace(' ',',')
if language == "中文":
tts_input1 = "[ZH]" + text + "[ZH]"
return tts_input1
elif language == "自动":
tts_input1 = f"[JA]{text}[JA]" if self.is_japanese(text) else f"[ZH]{text}[ZH]"
return tts_input1
elif language == "日文":
tts_input1 = "[JA]" + text + "[JA]"
return tts_input1
def create_tts_fn(self,path, input2, input3, n_scale= 0.667,n_scale_w = 0.8, l_scale = 1 ):
self.language = input2
self.speaker_id = int(input3)
self.n_scale = n_scale
self.n_scale_w = n_scale_w
self.l_scale = l_scale
self.dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.hps_ms = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
self.n_speakers = self.hps_ms.data.n_speakers if 'n_speakers' in self.hps_ms.data.keys() else 0
self.n_symbols = len(self.hps_ms.symbols) if 'symbols' in self.hps_ms.keys() else 0
self.net_g_ms = SynthesizerTrn(
self.n_symbols,
self.hps_ms.data.filter_length // 2 + 1,
self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
n_speakers=self.n_speakers,
**self.hps_ms.model).to(self.dev)
_ = self.net_g_ms.eval()
_ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", self.net_g_ms)
return 'success'
def tts_fn(self,text):
if self.local_chat1:
text = self.mori(text)
elif self.api_input2:
text = self.ChATGLM(text)
else:
text = text = self.chatgpt(text)
print(text)
text =self.sle(self.language,text)
with torch.no_grad():
stn_tst = self.get_text(text, self.hps_ms, cleaned=False)
x_tst = stn_tst.unsqueeze(0).to(self.dev)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(self.dev)
sid = torch.LongTensor([self.speaker_id]).to(self.dev)
audio = self.net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=self.n_scale, noise_scale_w=self.n_scale_w, length_scale=self.l_scale)[0][
0, 0].data.cpu().float().numpy()
resampled_audio_data = signal.resample(audio, len(audio) * 2)
sf.write('temp.wav', resampled_audio_data, 44100, 'PCM_24')
return (self.hps_ms.data.sampling_rate, audio),text.replace('[JA]','').replace('[ZH]','')
app = Flask(__name__)
print("开始部署")
grVits = VitsGradio()
if __name__ == '__main__':
grVits.Vits.launch()