Spaces:
Sleeping
Sleeping
Mahiruoshi
commited on
Commit
·
332dcef
1
Parent(s):
ecec7dc
Upload audiobook.py
Browse files- audiobook.py +194 -0
audiobook.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import re
|
3 |
+
import numpy as np
|
4 |
+
import IPython.display as ipd
|
5 |
+
import torch
|
6 |
+
import commons
|
7 |
+
import utils
|
8 |
+
from models import SynthesizerTrn
|
9 |
+
from text.symbols import symbols
|
10 |
+
from text import text_to_sequence
|
11 |
+
import gradio as gr
|
12 |
+
import time
|
13 |
+
import json
|
14 |
+
import datetime
|
15 |
+
import os
|
16 |
+
import pickle
|
17 |
+
from scipy.io.wavfile import write
|
18 |
+
import librosa
|
19 |
+
import romajitable
|
20 |
+
from mel_processing import spectrogram_torch
|
21 |
+
import soundfile as sf
|
22 |
+
from scipy import signal
|
23 |
+
class VitsGradio:
|
24 |
+
def __init__(self):
|
25 |
+
self.lan = ["中文","日文","自动"]
|
26 |
+
self.modelPaths = []
|
27 |
+
for root,dirs,files in os.walk("checkpoints"):
|
28 |
+
for dir in dirs:
|
29 |
+
self.modelPaths.append(dir)
|
30 |
+
with gr.Blocks() as self.Vits:
|
31 |
+
with gr.Tab("小说合成"):
|
32 |
+
with gr.Row():
|
33 |
+
with gr.Column():
|
34 |
+
with gr.Row():
|
35 |
+
with gr.Column():
|
36 |
+
self.Text = gr.File(label="Text")
|
37 |
+
self.audio_path = gr.TextArea(label="音频路径",lines=1,value = 'audiobook/chapter.wav')
|
38 |
+
btnbook = gr.Button("小说合成")
|
39 |
+
btnbook.click(self.tts_fn, inputs=[self.Text,self.audio_path])
|
40 |
+
with gr.Tab("TTS设定"):
|
41 |
+
with gr.Row():
|
42 |
+
with gr.Column():
|
43 |
+
with gr.Row():
|
44 |
+
with gr.Column():
|
45 |
+
self.input1 = gr.Dropdown(label = "模型", choices = self.modelPaths, value = self.modelPaths[0], type = "value")
|
46 |
+
self.input2 = gr.Dropdown(label="Language", choices=self.lan, value="自动", interactive=True)
|
47 |
+
self.input3 = gr.Dropdown(label="Speaker", choices=list(range(1001)), value=0, interactive=True)
|
48 |
+
self.input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.6)
|
49 |
+
self.input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.667)
|
50 |
+
self.input6 = gr.Slider(minimum=0.1, maximum=10, label="duration", value=1)
|
51 |
+
statusa = gr.TextArea()
|
52 |
+
btnVC = gr.Button("完成vits TTS端设定")
|
53 |
+
btnVC.click(self.create_tts_fn, inputs=[self.input1, self.input2, self.input3, self.input4, self.input5, self.input6], outputs = [statusa])
|
54 |
+
|
55 |
+
def is_japanese(self,string):
|
56 |
+
for ch in string:
|
57 |
+
if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
|
58 |
+
return True
|
59 |
+
return False
|
60 |
+
|
61 |
+
def is_english(self,string):
|
62 |
+
import re
|
63 |
+
pattern = re.compile('^[A-Za-z0-9.,:;!?()_*"\' ]+$')
|
64 |
+
if pattern.fullmatch(string):
|
65 |
+
return True
|
66 |
+
else:
|
67 |
+
return False
|
68 |
+
|
69 |
+
def get_text(self,text, hps, cleaned=False):
|
70 |
+
if cleaned:
|
71 |
+
text_norm = text_to_sequence(text, self.hps_ms.symbols, [])
|
72 |
+
else:
|
73 |
+
text_norm = text_to_sequence(text, self.hps_ms.symbols, self.hps_ms.data.text_cleaners)
|
74 |
+
if self.hps_ms.data.add_blank:
|
75 |
+
text_norm = commons.intersperse(text_norm, 0)
|
76 |
+
text_norm = torch.LongTensor(text_norm)
|
77 |
+
return text_norm
|
78 |
+
|
79 |
+
def get_label(self,text, label):
|
80 |
+
if f'[{label}]' in text:
|
81 |
+
return True, text.replace(f'[{label}]', '')
|
82 |
+
else:
|
83 |
+
return False, text
|
84 |
+
|
85 |
+
def sle(self,language,text):
|
86 |
+
text = text.replace('\n','。').replace(' ',',')
|
87 |
+
if language == "中文":
|
88 |
+
tts_input1 = "[ZH]" + text + "[ZH]"
|
89 |
+
return tts_input1
|
90 |
+
elif language == "自动":
|
91 |
+
tts_input1 = f"[JA]{text}[JA]" if self.is_japanese(text) else f"[ZH]{text}[ZH]"
|
92 |
+
return tts_input1
|
93 |
+
elif language == "日文":
|
94 |
+
tts_input1 = "[JA]" + text + "[JA]"
|
95 |
+
return tts_input1
|
96 |
+
|
97 |
+
def create_tts_fn(self,path, input2, input3, n_scale= 0.667,n_scale_w = 0.8, l_scale = 1 ):
|
98 |
+
self.language = input2
|
99 |
+
self.speaker_id = int(input3)
|
100 |
+
self.n_scale = n_scale
|
101 |
+
self.n_scale_w = n_scale_w
|
102 |
+
self.l_scale = l_scale
|
103 |
+
self.dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
104 |
+
self.hps_ms = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
|
105 |
+
self.n_speakers = self.hps_ms.data.n_speakers if 'n_speakers' in self.hps_ms.data.keys() else 0
|
106 |
+
self.n_symbols = len(self.hps_ms.symbols) if 'symbols' in self.hps_ms.keys() else 0
|
107 |
+
self.net_g_ms = SynthesizerTrn(
|
108 |
+
self.n_symbols,
|
109 |
+
self.hps_ms.data.filter_length // 2 + 1,
|
110 |
+
self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
|
111 |
+
n_speakers=self.n_speakers,
|
112 |
+
**self.hps_ms.model).to(self.dev)
|
113 |
+
_ = self.net_g_ms.eval()
|
114 |
+
_ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", self.net_g_ms)
|
115 |
+
return 'success'
|
116 |
+
|
117 |
+
def transfer(self,text):
|
118 |
+
text = re.sub("<[^>]*>","",text)
|
119 |
+
result_list = re.split(r'\n', text)
|
120 |
+
final_list = []
|
121 |
+
for j in result_list:
|
122 |
+
result_list2 = re.split(r'。|!|——|:|;|……|——|。|!', j)
|
123 |
+
for i in result_list2:
|
124 |
+
if self.is_english(i):
|
125 |
+
i = romajitable.to_kana(i).katakana
|
126 |
+
for m in range(20):
|
127 |
+
i = i.replace('\n','').replace(' ','').replace('……','。').replace('…','。').replace('还','孩').replace('“','').replace('”','').replace('!','。').replace('」','').replace('「','')
|
128 |
+
#Current length of single sentence: 50
|
129 |
+
if len(i)>1:
|
130 |
+
if len(i) > 50:
|
131 |
+
try:
|
132 |
+
cur_list = re.split(r'。|!|——|,|:', i)
|
133 |
+
for i in cur_list:
|
134 |
+
if len(i)>1:
|
135 |
+
final_list.append(i+'。')
|
136 |
+
except:
|
137 |
+
pass
|
138 |
+
else:
|
139 |
+
final_list.append(i)
|
140 |
+
final_list = [x for x in final_list if x != '']
|
141 |
+
return final_list
|
142 |
+
|
143 |
+
def tts_fn(self,text,audio_path):
|
144 |
+
with open(text.name, "r", encoding="utf-8") as f:
|
145 |
+
text = f.read()
|
146 |
+
a = ['【','[','(','(','〔']
|
147 |
+
b = ['】',']',')',')','〕']
|
148 |
+
for i in a:
|
149 |
+
text = text.replace(i,'<')
|
150 |
+
for i in b:
|
151 |
+
text = text.replace(i,'>')
|
152 |
+
final_list = self.transfer(text)
|
153 |
+
split_list = []
|
154 |
+
while len(final_list) > 0:
|
155 |
+
split_list.append(final_list[:1000])
|
156 |
+
final_list = final_list[1000:]
|
157 |
+
c0 = 0
|
158 |
+
for lists in split_list:
|
159 |
+
audio_fin = []
|
160 |
+
t = datetime.timedelta(seconds=0)
|
161 |
+
c = 0
|
162 |
+
f1 = open(audio_path.replace('.wav',str(c0)+".srt"),'w',encoding='utf-8')
|
163 |
+
for sentence in lists:
|
164 |
+
try:
|
165 |
+
c +=1
|
166 |
+
with torch.no_grad():
|
167 |
+
stn_tst = self.get_text(self.sle(self.language,sentence), self.hps_ms, cleaned=False)
|
168 |
+
x_tst = stn_tst.unsqueeze(0).to(self.dev)
|
169 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(self.dev)
|
170 |
+
sid = torch.LongTensor([self.speaker_id]).to(self.dev)
|
171 |
+
t1 = time.time()
|
172 |
+
audio = self.net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=self.n_scale, noise_scale_w=self.n_scale_w, length_scale=self.l_scale)[0][
|
173 |
+
0, 0].data.cpu().float().numpy()
|
174 |
+
t2 = time.time()
|
175 |
+
spending_time = "第"+str(c)+"句的推理时间为:"+str(t2-t1)+"s"
|
176 |
+
print(spending_time)
|
177 |
+
time_start = str(t).split(".")[0] + "," + str(t.microseconds)[:3]
|
178 |
+
last_time = datetime.timedelta(seconds=len(audio)/float(22050))
|
179 |
+
t+=last_time
|
180 |
+
time_end = str(t).split(".")[0] + "," + str(t.microseconds)[:3]
|
181 |
+
print(time_end)
|
182 |
+
f1.write(str(c-1)+'\n'+time_start+' --> '+time_end+'\n'+sentence.replace('。','')+'\n\n')
|
183 |
+
resampled_audio_data = signal.resample(audio, len(audio) * 2)
|
184 |
+
audio_fin.append(resampled_audio_data)
|
185 |
+
except:
|
186 |
+
pass
|
187 |
+
sf.write(audio_path.replace('.wav',str(c0)+'.wav'), np.concatenate(audio_fin), 44100, 'PCM_24')
|
188 |
+
c0 += 1
|
189 |
+
file_path = audio_path.replace('.wav',str(c0)+".srt")
|
190 |
+
|
191 |
+
if __name__ == '__main__':
|
192 |
+
print("开始部署")
|
193 |
+
grVits = VitsGradio()
|
194 |
+
grVits.Vits.launch()
|