Spaces:
Sleeping
Sleeping
File size: 19,410 Bytes
134a749 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
import json
import pathlib
import random
import sys
from typing import Tuple
PROJECT_ROOT = pathlib.Path(__file__).absolute().parents[2].absolute()
sys.path.insert(0, str(PROJECT_ROOT))
import cv2
import numpy as np
import torch
import torch.utils.data as data
import torchvision.transforms as transforms
from PIL import Image, ImageDraw, ImageOps
from torchvision.ops import masks_to_boxes
from src.utils.labelmap import label_map
from src.utils.posemap import kpoint_to_heatmap
class DressCodeDataset(data.Dataset):
def __init__(self,
dataroot_path: str,
phase: str,
tokenizer,
radius=5,
caption_folder='fine_captions.json',
coarse_caption_folder='coarse_captions.json',
sketch_threshold_range: Tuple[int, int] = (20, 127),
order: str = 'paired',
outputlist: Tuple[str] = ('c_name', 'im_name', 'image', 'im_cloth', 'shape', 'pose_map',
'parse_array', 'im_mask', 'inpaint_mask', 'parse_mask_total',
'im_sketch', 'captions',
'original_captions', 'category', 'stitch_label'),
category: Tuple[str] = ('dresses', 'upper_body', 'lower_body'),
size: Tuple[int, int] = (512, 384),
):
super(DressCodeDataset, self).__init__()
self.dataroot = pathlib.Path(dataroot_path)
self.phase = phase
self.caption_folder = caption_folder
self.sketch_threshold_range = sketch_threshold_range
self.category = category
self.outputlist = outputlist
self.height = size[0]
self.width = size[1]
self.radius = radius
self.tokenizer = tokenizer
self.transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
self.transform2D = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
self.order = order
im_names = []
c_names = []
dataroot_names = []
possible_outputs = ['c_name', 'im_name', 'cloth', 'image', 'im_cloth', 'shape', 'im_head', 'im_pose',
'pose_map', 'parse_array', 'dense_labels', 'dense_uv', 'skeleton',
'im_mask', 'inpaint_mask', 'parse_mask_total', 'cloth_sketch', 'im_sketch', 'captions',
'original_captions', 'category', 'hands', 'parse_head_2', 'stitch_label']
assert all(x in possible_outputs for x in outputlist)
# Load Captions
with open(self.dataroot / self.caption_folder) as f:
self.captions_dict = json.load(f)
self.captions_dict = {k: v for k, v in self.captions_dict.items() if len(v) >= 3}
with open(self.dataroot / coarse_caption_folder) as f:
self.captions_dict.update(json.load(f))
for c in category:
assert c in ['dresses', 'upper_body', 'lower_body']
dataroot = self.dataroot / c
if phase == 'train':
filename = dataroot / f"{phase}_pairs.txt"
else:
filename = dataroot / f"{phase}_pairs_{order}.txt"
with open(filename, 'r') as f:
for line in f.readlines():
im_name, c_name = line.strip().split()
if c_name.split('_')[0] not in self.captions_dict:
continue
im_names.append(im_name)
c_names.append(c_name)
dataroot_names.append(dataroot)
self.im_names = im_names
self.c_names = c_names
self.dataroot_names = dataroot_names
def __getitem__(self, index):
"""
For each index return the corresponding sample in the dataset
:param index: data index
:type index: int
:return: dict containing dataset samples
:rtype: dict
"""
c_name = self.c_names[index]
im_name = self.im_names[index]
dataroot = self.dataroot_names[index]
sketch_threshold = random.randint(self.sketch_threshold_range[0], self.sketch_threshold_range[1])
if "captions" in self.outputlist or "original_captions" in self.outputlist:
captions = self.captions_dict[c_name.split('_')[0]]
# if train randomly shuffle captions if there are multiple, else concatenate with comma
if self.phase == 'train':
random.shuffle(captions)
captions = ", ".join(captions)
original_captions = captions
if "captions" in self.outputlist:
cond_input = self.tokenizer([captions], max_length=self.tokenizer.model_max_length, padding="max_length",
truncation=True, return_tensors="pt").input_ids
cond_input = cond_input.squeeze(0)
max_length = cond_input.shape[-1]
uncond_input = self.tokenizer(
[""], padding="max_length", max_length=max_length, return_tensors="pt"
).input_ids.squeeze(0)
captions = cond_input
if "image" in self.outputlist or "im_head" in self.outputlist or "im_cloth" in self.outputlist:
image = Image.open(dataroot / 'images' / im_name)
image = image.resize((self.width, self.height))
image = self.transform(image) # [-1,1]
if "im_sketch" in self.outputlist:
if "unpaired" == self.order and self.phase == 'test': # Upper of multigarment is the same of unpaired
im_sketch = Image.open(
dataroot / 'im_sketch_unpaired' / f'{im_name.replace(".jpg", "")}_{c_name.replace(".jpg", ".png")}')
else:
im_sketch = Image.open(dataroot / 'im_sketch' / c_name.replace(".jpg", ".png"))
im_sketch = im_sketch.resize((self.width, self.height))
im_sketch = ImageOps.invert(im_sketch)
# threshold grayscale pil image
im_sketch = im_sketch.point(lambda p: 255 if p > sketch_threshold else 0)
# im_sketch = im_sketch.convert("RGB")
im_sketch = transforms.functional.to_tensor(im_sketch) # [-1,1]
im_sketch = 1 - im_sketch
if "im_pose" in self.outputlist or "parser_mask" in self.outputlist or "im_mask" in self.outputlist or "parse_mask_total" in self.outputlist or "parse_array" in self.outputlist or "pose_map" in self.outputlist or "parse_array" in self.outputlist or "shape" in self.outputlist or "im_head" in self.outputlist:
# Label Map
parse_name = im_name.replace('_0.jpg', '_4.png')
im_parse = Image.open(dataroot / 'label_maps' / parse_name)
im_parse = im_parse.resize((self.width, self.height), Image.NEAREST)
parse_array = np.array(im_parse)
parse_shape = (parse_array > 0).astype(np.float32)
parse_head = (parse_array == 1).astype(np.float32) + \
(parse_array == 2).astype(np.float32) + \
(parse_array == 3).astype(np.float32) + \
(parse_array == 11).astype(np.float32)
parser_mask_fixed = (parse_array == label_map["hair"]).astype(np.float32) + \
(parse_array == label_map["left_shoe"]).astype(np.float32) + \
(parse_array == label_map["right_shoe"]).astype(np.float32) + \
(parse_array == label_map["hat"]).astype(np.float32) + \
(parse_array == label_map["sunglasses"]).astype(np.float32) + \
(parse_array == label_map["scarf"]).astype(np.float32) + \
(parse_array == label_map["bag"]).astype(np.float32)
parser_mask_changeable = (parse_array == label_map["background"]).astype(np.float32)
arms = (parse_array == 14).astype(np.float32) + (parse_array == 15).astype(np.float32)
category = str(dataroot.name)
if category == 'dresses':
label_cat = 7
parse_cloth = (parse_array == 7).astype(np.float32)
parse_mask = (parse_array == 7).astype(np.float32) + \
(parse_array == 12).astype(np.float32) + \
(parse_array == 13).astype(np.float32)
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
elif category == 'upper_body':
label_cat = 4
parse_cloth = (parse_array == 4).astype(np.float32)
parse_mask = (parse_array == 4).astype(np.float32)
parser_mask_fixed += (parse_array == label_map["skirt"]).astype(np.float32) + \
(parse_array == label_map["pants"]).astype(np.float32)
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
elif category == 'lower_body':
label_cat = 6
parse_cloth = (parse_array == 6).astype(np.float32)
parse_mask = (parse_array == 6).astype(np.float32) + \
(parse_array == 12).astype(np.float32) + \
(parse_array == 13).astype(np.float32)
parser_mask_fixed += (parse_array == label_map["upper_clothes"]).astype(np.float32) + \
(parse_array == 14).astype(np.float32) + \
(parse_array == 15).astype(np.float32)
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
else:
raise NotImplementedError
parse_head = torch.from_numpy(parse_head) # [0,1]
parse_cloth = torch.from_numpy(parse_cloth) # [0,1]
parse_mask = torch.from_numpy(parse_mask) # [0,1]
parser_mask_fixed = torch.from_numpy(parser_mask_fixed)
parser_mask_changeable = torch.from_numpy(parser_mask_changeable)
# dilation
parse_without_cloth = np.logical_and(parse_shape, np.logical_not(parse_mask))
parse_mask = parse_mask.cpu().numpy()
if "im_head" in self.outputlist:
# Masked cloth
im_head = image * parse_head - (1 - parse_head)
if "im_cloth" in self.outputlist:
im_cloth = image * parse_cloth + (1 - parse_cloth)
# Shape
parse_shape = Image.fromarray((parse_shape * 255).astype(np.uint8))
parse_shape = parse_shape.resize((self.width // 16, self.height // 16), Image.BILINEAR)
parse_shape = parse_shape.resize((self.width, self.height), Image.BILINEAR)
shape = self.transform2D(parse_shape) # [-1,1]
# Load pose points
pose_name = im_name.replace('_0.jpg', '_2.json')
with open(dataroot / 'keypoints' / pose_name, 'r') as f:
pose_label = json.load(f)
pose_data = pose_label['keypoints']
pose_data = np.array(pose_data)
pose_data = pose_data.reshape((-1, 4))
point_num = pose_data.shape[0]
pose_map = torch.zeros(point_num, self.height, self.width)
r = self.radius * (self.height / 512.0)
im_pose = Image.new('L', (self.width, self.height))
pose_draw = ImageDraw.Draw(im_pose)
neck = Image.new('L', (self.width, self.height))
neck_draw = ImageDraw.Draw(neck)
for i in range(point_num):
one_map = Image.new('L', (self.width, self.height))
draw = ImageDraw.Draw(one_map)
point_x = np.multiply(pose_data[i, 0], self.width / 384.0)
point_y = np.multiply(pose_data[i, 1], self.height / 512.0)
if point_x > 1 and point_y > 1:
draw.rectangle((point_x - r, point_y - r, point_x + r, point_y + r), 'white', 'white')
pose_draw.rectangle((point_x - r, point_y - r, point_x + r, point_y + r), 'white', 'white')
if i == 2 or i == 5:
neck_draw.ellipse((point_x - r * 4, point_y - r * 4, point_x + r * 4, point_y + r * 4), 'white',
'white')
one_map = self.transform2D(one_map)
pose_map[i] = one_map[0]
d = []
for pose_d in pose_data:
ux = pose_d[0] / 384.0
uy = pose_d[1] / 512.0
# scale posemap points
px = ux * self.width
py = uy * self.height
d.append(kpoint_to_heatmap(np.array([px, py]), (self.height, self.width), 9))
pose_map = torch.stack(d)
# just for visualization
im_pose = self.transform2D(im_pose)
im_arms = Image.new('L', (self.width, self.height))
arms_draw = ImageDraw.Draw(im_arms)
if category == 'dresses' or category == 'upper_body' or category == 'lower_body':
with open(dataroot / 'keypoints' / pose_name, 'r') as f:
data = json.load(f)
shoulder_right = np.multiply(tuple(data['keypoints'][2][:2]), self.height / 512.0)
shoulder_left = np.multiply(tuple(data['keypoints'][5][:2]), self.height / 512.0)
elbow_right = np.multiply(tuple(data['keypoints'][3][:2]), self.height / 512.0)
elbow_left = np.multiply(tuple(data['keypoints'][6][:2]), self.height / 512.0)
wrist_right = np.multiply(tuple(data['keypoints'][4][:2]), self.height / 512.0)
wrist_left = np.multiply(tuple(data['keypoints'][7][:2]), self.height / 512.0)
if wrist_right[0] <= 1. and wrist_right[1] <= 1.:
if elbow_right[0] <= 1. and elbow_right[1] <= 1.:
arms_draw.line(
np.concatenate((wrist_left, elbow_left, shoulder_left, shoulder_right)).astype(
np.uint16).tolist(), 'white', 45, 'curve')
else:
arms_draw.line(np.concatenate(
(wrist_left, elbow_left, shoulder_left, shoulder_right, elbow_right)).astype(
np.uint16).tolist(), 'white', 45, 'curve')
elif wrist_left[0] <= 1. and wrist_left[1] <= 1.:
if elbow_left[0] <= 1. and elbow_left[1] <= 1.:
arms_draw.line(
np.concatenate((shoulder_left, shoulder_right, elbow_right, wrist_right)).astype(
np.uint16).tolist(), 'white', 45, 'curve')
else:
arms_draw.line(np.concatenate(
(elbow_left, shoulder_left, shoulder_right, elbow_right, wrist_right)).astype(
np.uint16).tolist(), 'white', 45, 'curve')
else:
arms_draw.line(np.concatenate(
(wrist_left, elbow_left, shoulder_left, shoulder_right, elbow_right, wrist_right)).astype(
np.uint16).tolist(), 'white', 45, 'curve')
hands = np.logical_and(np.logical_not(im_arms), arms)
if category == 'dresses' or category == 'upper_body':
parse_mask += im_arms
parser_mask_fixed += hands
# delete neck
parse_head_2 = torch.clone(parse_head)
if category == 'dresses' or category == 'upper_body':
with open(dataroot / 'keypoints' / pose_name, 'r') as f:
data = json.load(f)
points = []
points.append(np.multiply(tuple(data['keypoints'][2][:2]), self.height / 512.0))
points.append(np.multiply(tuple(data['keypoints'][5][:2]), self.height / 512.0))
x_coords, y_coords = zip(*points)
A = np.vstack([x_coords, np.ones(len(x_coords))]).T
m, c = np.linalg.lstsq(A, y_coords, rcond=None)[0]
for i in range(parse_array.shape[1]):
y = i * m + c
parse_head_2[int(y - 20 * (self.height / 512.0)):, i] = 0
parser_mask_fixed = np.logical_or(parser_mask_fixed, np.array(parse_head_2, dtype=np.uint16))
parse_mask += np.logical_or(parse_mask, np.logical_and(np.array(parse_head, dtype=np.uint16),
np.logical_not(
np.array(parse_head_2, dtype=np.uint16))))
# tune the amount of dilation here
parse_mask = cv2.dilate(parse_mask, np.ones((5, 5), np.uint16), iterations=5)
parse_mask = np.logical_and(parser_mask_changeable, np.logical_not(parse_mask))
parse_mask_total = np.logical_or(parse_mask, parser_mask_fixed)
im_mask = image * parse_mask_total
inpaint_mask = 1 - parse_mask_total
# here we have to modify the mask and get the bounding box
bboxes = masks_to_boxes(inpaint_mask.unsqueeze(0))
bboxes = bboxes.type(torch.int32) # xmin, ymin, xmax, ymax format
xmin = bboxes[0, 0]
xmax = bboxes[0, 2]
ymin = bboxes[0, 1]
ymax = bboxes[0, 3]
inpaint_mask[ymin:ymax + 1, xmin:xmax + 1] = torch.logical_and(
torch.ones_like(inpaint_mask[ymin:ymax + 1, xmin:xmax + 1]),
torch.logical_not(parser_mask_fixed[ymin:ymax + 1, xmin:xmax + 1]))
inpaint_mask = inpaint_mask.unsqueeze(0)
im_mask = image * np.logical_not(inpaint_mask.repeat(3, 1, 1))
parse_mask_total = parse_mask_total.numpy()
parse_mask_total = parse_array * parse_mask_total
parse_mask_total = torch.from_numpy(parse_mask_total)
if "stitch_label" in self.outputlist:
stitch_labelmap = Image.open(self.dataroot / 'test_stitchmap' / im_name.replace(".jpg", ".png"))
stitch_labelmap = transforms.ToTensor()(stitch_labelmap) * 255
stitch_label = stitch_labelmap == 13
result = {}
for k in self.outputlist:
result[k] = vars()[k]
# Output interpretation
# "c_name" -> filename of inshop cloth
# "im_name" -> filename of model with cloth
# "cloth" -> img of inshop cloth
# "image" -> img of the model with that cloth
# "im_cloth" -> cut cloth from the model
# "im_mask" -> black mask of the cloth in the model img
# "cloth_sketch" -> sketch of the inshop cloth
# "im_sketch" -> sketch of "im_cloth"
# ...
return result
def __len__(self):
return len(self.c_names)
|