File size: 5,712 Bytes
134a749
 
ea12b33
134a749
ea12b33
 
134a749
 
 
 
 
 
 
ea12b33
134a749
 
 
 
ea12b33
134a749
 
 
ea12b33
134a749
 
 
 
 
 
 
ea12b33
 
 
 
 
134a749
 
 
ea12b33
 
134a749
 
ea12b33
134a749
 
 
ea12b33
134a749
 
ea12b33
134a749
ea12b33
134a749
ea12b33
134a749
ea12b33
134a749
 
 
 
 
 
ea12b33
134a749
 
 
 
ea12b33
134a749
 
 
ea12b33
134a749
ea12b33
 
134a749
ea12b33
 
134a749
ea12b33
134a749
ea12b33
134a749
 
 
 
 
 
ea12b33
134a749
ea12b33
134a749
ea12b33
134a749
 
 
 
 
 
ea12b33
134a749
ea12b33
134a749
 
 
ea12b33
 
134a749
 
ea12b33
 
134a749
 
ea12b33
 
134a749
 
ea12b33
134a749
ea12b33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134a749
 
 
 
 
ea12b33
134a749
ea12b33
134a749
 
ea12b33
 
 
 
 
 
 
 
134a749
ea12b33
 
134a749
 
 
 
ea12b33
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import os

#  external libraries
import torch
import torch.utils.checkpoint
import torch.utils.checkpoint
from accelerate import Accelerator
from accelerate.logging import get_logger
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPTextModel, CLIPTokenizer

# custom imports
from src.datasets.dresscode import DressCodeDataset
from src.datasets.vitonhd import VitonHDDataset
from src.mgd_pipelines.mgd_pipe import MGDPipe
from src.mgd_pipelines.mgd_pipe_disentangled import MGDPipeDisentangled
from src.utils.arg_parser import eval_parse_args
from src.utils.image_from_pipe import generate_images_from_mgd_pipe
from src.utils.set_seeds import set_seed

# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")

logger = get_logger(__name__, log_level="INFO")
os.environ["TOKENIZERS_PARALLELISM"] = "true"
os.environ["WANDB_START_METHOD"] = "thread"


def main() -> None:
    args = eval_parse_args()
    accelerator = Accelerator(
        mixed_precision=args.mixed_precision,
    )
    device = accelerator.device

    # Set the training seed
    if args.seed is not None:
        set_seed(args.seed)

    # Load scheduler, tokenizer, and models
    val_scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
    val_scheduler.set_timesteps(50, device=device)

    tokenizer = CLIPTokenizer.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision
    )
    text_encoder = CLIPTextModel.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
    )
    vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)

    # Load unet
    unet = torch.hub.load(
        dataset=args.dataset,
        repo_or_dir="aimagelab/multimodal-garment-designer",
        source="github",
        model="mgd",
        pretrained=True,
    )

    # Freeze vae and text_encoder
    vae.requires_grad_(False)
    text_encoder.requires_grad_(False)

    # Enable memory efficient attention if requested
    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

    # Set the dataset category
    category = [args.category] if args.category else ["dresses", "upper_body", "lower_body"]

    # Load the appropriate dataset
    if args.dataset == "dresscode":
        test_dataset = DressCodeDataset(
            dataroot_path=args.dataset_path,
            phase="test",
            order=args.test_order,
            radius=5,
            sketch_threshold_range=(20, 20),
            tokenizer=tokenizer,
            category=category,
            size=(512, 384),
        )
    elif args.dataset == "vitonhd":
        test_dataset = VitonHDDataset(
            dataroot_path=args.dataset_path,
            phase="test",
            order=args.test_order,
            sketch_threshold_range=(20, 20),
            radius=5,
            tokenizer=tokenizer,
            size=(512, 384),
        )
    else:
        raise NotImplementedError(f"Dataset {args.dataset} is not supported.")

    # Prepare the dataloader
    test_dataloader = torch.utils.data.DataLoader(
        test_dataset,
        shuffle=False,
        batch_size=args.batch_size,
        num_workers=args.num_workers_test,
    )

    # Cast text_encoder and vae to half-precision for mixed precision training
    weight_dtype = torch.float32 if args.mixed_precision != "fp16" else torch.float16
    text_encoder.to(device, dtype=weight_dtype)
    vae.to(device, dtype=weight_dtype)

    # Ensure unet is in eval mode
    unet.eval()

    # Select the appropriate pipeline
    with torch.inference_mode():
        if args.disentagle:
            val_pipe = MGDPipeDisentangled(
                text_encoder=text_encoder,
                vae=vae,
                unet=unet.to(vae.dtype),
                tokenizer=tokenizer,
                scheduler=val_scheduler,
            ).to(device)
        else:
            val_pipe = MGDPipe(
                text_encoder=text_encoder,
                vae=vae,
                unet=unet.to(vae.dtype),
                tokenizer=tokenizer,
                scheduler=val_scheduler,
            ).to(device)

        # Debugging: Ensure val_pipe is callable
        assert callable(val_pipe), "The pipeline object (val_pipe) is not callable. Check MGDPipe implementation."

        # Enable attention slicing for memory efficiency
        val_pipe.enable_attention_slicing()

        # Prepare dataloader with accelerator
        test_dataloader = accelerator.prepare(test_dataloader)

        # Call the image generation function
        generate_images_from_mgd_pipe(
            test_order=args.test_order,
            pipe=val_pipe,
            test_dataloader=test_dataloader,
            save_name=args.save_name,
            dataset=args.dataset,
            output_dir=args.output_dir,
            guidance_scale=args.guidance_scale,
            guidance_scale_pose=args.guidance_scale_pose,
            guidance_scale_sketch=args.guidance_scale_sketch,
            sketch_cond_rate=args.sketch_cond_rate,
            start_cond_rate=args.start_cond_rate,
            no_pose=False,
            disentagle=args.disentagle,
            seed=args.seed,
        )


if __name__ == "__main__":
    main()