Spaces:
Sleeping
Sleeping
File size: 5,712 Bytes
134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 134a749 ea12b33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import os
# external libraries
import torch
import torch.utils.checkpoint
import torch.utils.checkpoint
from accelerate import Accelerator
from accelerate.logging import get_logger
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPTextModel, CLIPTokenizer
# custom imports
from src.datasets.dresscode import DressCodeDataset
from src.datasets.vitonhd import VitonHDDataset
from src.mgd_pipelines.mgd_pipe import MGDPipe
from src.mgd_pipelines.mgd_pipe_disentangled import MGDPipeDisentangled
from src.utils.arg_parser import eval_parse_args
from src.utils.image_from_pipe import generate_images_from_mgd_pipe
from src.utils.set_seeds import set_seed
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")
logger = get_logger(__name__, log_level="INFO")
os.environ["TOKENIZERS_PARALLELISM"] = "true"
os.environ["WANDB_START_METHOD"] = "thread"
def main() -> None:
args = eval_parse_args()
accelerator = Accelerator(
mixed_precision=args.mixed_precision,
)
device = accelerator.device
# Set the training seed
if args.seed is not None:
set_seed(args.seed)
# Load scheduler, tokenizer, and models
val_scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
val_scheduler.set_timesteps(50, device=device)
tokenizer = CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision
)
text_encoder = CLIPTextModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
)
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)
# Load unet
unet = torch.hub.load(
dataset=args.dataset,
repo_or_dir="aimagelab/multimodal-garment-designer",
source="github",
model="mgd",
pretrained=True,
)
# Freeze vae and text_encoder
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
# Enable memory efficient attention if requested
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
# Set the dataset category
category = [args.category] if args.category else ["dresses", "upper_body", "lower_body"]
# Load the appropriate dataset
if args.dataset == "dresscode":
test_dataset = DressCodeDataset(
dataroot_path=args.dataset_path,
phase="test",
order=args.test_order,
radius=5,
sketch_threshold_range=(20, 20),
tokenizer=tokenizer,
category=category,
size=(512, 384),
)
elif args.dataset == "vitonhd":
test_dataset = VitonHDDataset(
dataroot_path=args.dataset_path,
phase="test",
order=args.test_order,
sketch_threshold_range=(20, 20),
radius=5,
tokenizer=tokenizer,
size=(512, 384),
)
else:
raise NotImplementedError(f"Dataset {args.dataset} is not supported.")
# Prepare the dataloader
test_dataloader = torch.utils.data.DataLoader(
test_dataset,
shuffle=False,
batch_size=args.batch_size,
num_workers=args.num_workers_test,
)
# Cast text_encoder and vae to half-precision for mixed precision training
weight_dtype = torch.float32 if args.mixed_precision != "fp16" else torch.float16
text_encoder.to(device, dtype=weight_dtype)
vae.to(device, dtype=weight_dtype)
# Ensure unet is in eval mode
unet.eval()
# Select the appropriate pipeline
with torch.inference_mode():
if args.disentagle:
val_pipe = MGDPipeDisentangled(
text_encoder=text_encoder,
vae=vae,
unet=unet.to(vae.dtype),
tokenizer=tokenizer,
scheduler=val_scheduler,
).to(device)
else:
val_pipe = MGDPipe(
text_encoder=text_encoder,
vae=vae,
unet=unet.to(vae.dtype),
tokenizer=tokenizer,
scheduler=val_scheduler,
).to(device)
# Debugging: Ensure val_pipe is callable
assert callable(val_pipe), "The pipeline object (val_pipe) is not callable. Check MGDPipe implementation."
# Enable attention slicing for memory efficiency
val_pipe.enable_attention_slicing()
# Prepare dataloader with accelerator
test_dataloader = accelerator.prepare(test_dataloader)
# Call the image generation function
generate_images_from_mgd_pipe(
test_order=args.test_order,
pipe=val_pipe,
test_dataloader=test_dataloader,
save_name=args.save_name,
dataset=args.dataset,
output_dir=args.output_dir,
guidance_scale=args.guidance_scale,
guidance_scale_pose=args.guidance_scale_pose,
guidance_scale_sketch=args.guidance_scale_sketch,
sketch_cond_rate=args.sketch_cond_rate,
start_cond_rate=args.start_cond_rate,
no_pose=False,
disentagle=args.disentagle,
seed=args.seed,
)
if __name__ == "__main__":
main()
|