fyp-deploy / app.py
Mairaaa's picture
Update app.py
6ae61a6 verified
raw
history blame
3.92 kB
import os
import torch
import streamlit as st
from diffusers import AutoencoderKL, DDIMScheduler
from transformers import CLIPTextModel, CLIPTokenizer
from src.mgd_pipelines.mgd_pipe import MGDPipe
from src.mgd_pipelines.mgd_pipe_disentangled import MGDPipeDisentangled
from src.utils.image_from_pipe import generate_images_from_mgd_pipe
from accelerate import Accelerator
from diffusers.utils import check_min_version
from src.utils.set_seeds import set_seed
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")
# Set the environment variables for Hugging Face Spaces
os.environ["TOKENIZERS_PARALLELISM"] = "true"
os.environ["WANDB_START_METHOD"] = "thread"
# Streamlit interface components
st.title("Fashion Image Generation with Multimodal Garment Designer")
# Streamlit Input Parameters
category = st.selectbox("Select Category", ["dresses", "upper_body", "lower_body", "all"])
guidance_scale = st.slider("Guidance Scale", min_value=0.1, max_value=20.0, value=7.5, step=0.1)
guidance_scale_pose = st.slider("Guidance Scale (Pose)", min_value=0.1, max_value=20.0, value=7.5, step=0.1)
guidance_scale_sketch = st.slider("Guidance Scale (Sketch)", min_value=0.1, max_value=20.0, value=7.5, step=0.1)
sketch_cond_rate = st.slider("Sketch Conditioning Rate", min_value=0.1, max_value=1.0, value=0.5, step=0.05)
start_cond_rate = st.slider("Start Conditioning Rate", min_value=0.1, max_value=1.0, value=0.5, step=0.05)
seed = st.number_input("Seed", value=42, min_value=1)
# Button to run the image generation
if st.button("Generate Image"):
# Initialize Accelerator (for mixed precision, etc.)
accelerator = Accelerator()
device = accelerator.device
# Set the seed
set_seed(seed)
# Model and Tokenizer loading (use pre-trained from Hugging Face)
model_name = "stabilityai/stable-diffusion-2-1-base" # Use appropriate model name
# Load scheduler, tokenizer, and models
val_scheduler = DDIMScheduler.from_pretrained(model_name, subfolder="scheduler")
val_scheduler.set_timesteps(50, device=device)
tokenizer = CLIPTokenizer.from_pretrained(model_name, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(model_name, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(model_name, subfolder="vae")
# Load UNet model (you can use your own model)
unet = torch.hub.load(
dataset="aimagelab/multimodal-garment-designer",
repo_or_dir="aimagelab/multimodal-garment-designer",
source="github",
model="mgd",
pretrained=True,
)
# Freeze VAE and text encoder
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
# Select pipeline (use disentangled option if needed)
val_pipe = MGDPipe(
text_encoder=text_encoder,
vae=vae,
unet=unet.to(vae.dtype),
tokenizer=tokenizer,
scheduler=val_scheduler,
).to(device)
# Run image generation using your pipeline
with torch.no_grad():
# Generate the image
images = generate_images_from_mgd_pipe(
test_order="test", # or some predefined order
pipe=val_pipe,
test_dataloader=None, # Adjust accordingly, or use pre-existing dataset
save_name="generated_image",
dataset="dresscode", # Adjust if needed
output_dir=".", # Save location
guidance_scale=guidance_scale,
guidance_scale_pose=guidance_scale_pose,
guidance_scale_sketch=guidance_scale_sketch,
sketch_cond_rate=sketch_cond_rate,
start_cond_rate=start_cond_rate,
no_pose=False,
disentagle=False, # Adjust if needed
seed=seed,
)
# Display the generated image
st.image(images[0], caption="Generated Fashion Image", use_column_width=True)