Spaces:
Sleeping
Sleeping
import json | |
import pathlib | |
import random | |
import sys | |
from typing import Tuple | |
PROJECT_ROOT = pathlib.Path(__file__).absolute().parents[2].absolute() | |
sys.path.insert(0, str(PROJECT_ROOT)) | |
import cv2 | |
import numpy as np | |
import torch | |
import torch.utils.data as data | |
import torchvision.transforms as transforms | |
from PIL import Image, ImageDraw, ImageOps | |
from torchvision.ops import masks_to_boxes | |
from src.utils.labelmap import label_map | |
from src.utils.posemap import kpoint_to_heatmap | |
class DressCodeDataset(data.Dataset): | |
def __init__(self, | |
dataroot_path: str, | |
phase: str, | |
tokenizer, | |
radius=5, | |
caption_folder='fine_captions.json', | |
coarse_caption_folder='coarse_captions.json', | |
sketch_threshold_range: Tuple[int, int] = (20, 127), | |
order: str = 'paired', | |
outputlist: Tuple[str] = ('c_name', 'im_name', 'image', 'im_cloth', 'shape', 'pose_map', | |
'parse_array', 'im_mask', 'inpaint_mask', 'parse_mask_total', | |
'im_sketch', 'captions', | |
'original_captions', 'category', 'stitch_label'), | |
category: Tuple[str] = ('dresses', 'upper_body', 'lower_body'), | |
size: Tuple[int, int] = (512, 384), | |
): | |
super(DressCodeDataset, self).__init__() | |
self.dataroot = pathlib.Path(dataroot_path) | |
self.phase = phase | |
self.caption_folder = caption_folder | |
self.sketch_threshold_range = sketch_threshold_range | |
self.category = category | |
self.outputlist = outputlist | |
self.height = size[0] | |
self.width = size[1] | |
self.radius = radius | |
self.tokenizer = tokenizer | |
self.transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) | |
]) | |
self.transform2D = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.5,), (0.5,)) | |
]) | |
self.order = order | |
im_names = [] | |
c_names = [] | |
dataroot_names = [] | |
possible_outputs = ['c_name', 'im_name', 'cloth', 'image', 'im_cloth', 'shape', 'im_head', 'im_pose', | |
'pose_map', 'parse_array', 'dense_labels', 'dense_uv', 'skeleton', | |
'im_mask', 'inpaint_mask', 'parse_mask_total', 'cloth_sketch', 'im_sketch', 'captions', | |
'original_captions', 'category', 'hands', 'parse_head_2', 'stitch_label'] | |
assert all(x in possible_outputs for x in outputlist) | |
# Load Captions | |
with open(self.dataroot / self.caption_folder) as f: | |
self.captions_dict = json.load(f) | |
self.captions_dict = {k: v for k, v in self.captions_dict.items() if len(v) >= 3} | |
with open(self.dataroot / coarse_caption_folder) as f: | |
self.captions_dict.update(json.load(f)) | |
for c in category: | |
assert c in ['dresses', 'upper_body', 'lower_body'] | |
dataroot = self.dataroot / c | |
if phase == 'train': | |
filename = dataroot / f"{phase}_pairs.txt" | |
else: | |
filename = dataroot / f"{phase}_pairs_{order}.txt" | |
with open(filename, 'r') as f: | |
for line in f.readlines(): | |
im_name, c_name = line.strip().split() | |
if c_name.split('_')[0] not in self.captions_dict: | |
continue | |
im_names.append(im_name) | |
c_names.append(c_name) | |
dataroot_names.append(dataroot) | |
self.im_names = im_names | |
self.c_names = c_names | |
self.dataroot_names = dataroot_names | |
def __getitem__(self, index): | |
""" | |
For each index return the corresponding sample in the dataset | |
:param index: data index | |
:type index: int | |
:return: dict containing dataset samples | |
:rtype: dict | |
""" | |
c_name = self.c_names[index] | |
im_name = self.im_names[index] | |
dataroot = self.dataroot_names[index] | |
sketch_threshold = random.randint(self.sketch_threshold_range[0], self.sketch_threshold_range[1]) | |
if "captions" in self.outputlist or "original_captions" in self.outputlist: | |
captions = self.captions_dict[c_name.split('_')[0]] | |
# if train randomly shuffle captions if there are multiple, else concatenate with comma | |
if self.phase == 'train': | |
random.shuffle(captions) | |
captions = ", ".join(captions) | |
original_captions = captions | |
if "captions" in self.outputlist: | |
cond_input = self.tokenizer([captions], max_length=self.tokenizer.model_max_length, padding="max_length", | |
truncation=True, return_tensors="pt").input_ids | |
cond_input = cond_input.squeeze(0) | |
max_length = cond_input.shape[-1] | |
uncond_input = self.tokenizer( | |
[""], padding="max_length", max_length=max_length, return_tensors="pt" | |
).input_ids.squeeze(0) | |
captions = cond_input | |
if "image" in self.outputlist or "im_head" in self.outputlist or "im_cloth" in self.outputlist: | |
image = Image.open(dataroot / 'images' / im_name) | |
image = image.resize((self.width, self.height)) | |
image = self.transform(image) # [-1,1] | |
if "im_sketch" in self.outputlist: | |
if "unpaired" == self.order and self.phase == 'test': # Upper of multigarment is the same of unpaired | |
im_sketch = Image.open( | |
dataroot / 'im_sketch_unpaired' / f'{im_name.replace(".jpg", "")}_{c_name.replace(".jpg", ".png")}') | |
else: | |
im_sketch = Image.open(dataroot / 'im_sketch' / c_name.replace(".jpg", ".png")) | |
im_sketch = im_sketch.resize((self.width, self.height)) | |
im_sketch = ImageOps.invert(im_sketch) | |
# threshold grayscale pil image | |
im_sketch = im_sketch.point(lambda p: 255 if p > sketch_threshold else 0) | |
# im_sketch = im_sketch.convert("RGB") | |
im_sketch = transforms.functional.to_tensor(im_sketch) # [-1,1] | |
im_sketch = 1 - im_sketch | |
if "im_pose" in self.outputlist or "parser_mask" in self.outputlist or "im_mask" in self.outputlist or "parse_mask_total" in self.outputlist or "parse_array" in self.outputlist or "pose_map" in self.outputlist or "parse_array" in self.outputlist or "shape" in self.outputlist or "im_head" in self.outputlist: | |
# Label Map | |
parse_name = im_name.replace('_0.jpg', '_4.png') | |
im_parse = Image.open(dataroot / 'label_maps' / parse_name) | |
im_parse = im_parse.resize((self.width, self.height), Image.NEAREST) | |
parse_array = np.array(im_parse) | |
parse_shape = (parse_array > 0).astype(np.float32) | |
parse_head = (parse_array == 1).astype(np.float32) + \ | |
(parse_array == 2).astype(np.float32) + \ | |
(parse_array == 3).astype(np.float32) + \ | |
(parse_array == 11).astype(np.float32) | |
parser_mask_fixed = (parse_array == label_map["hair"]).astype(np.float32) + \ | |
(parse_array == label_map["left_shoe"]).astype(np.float32) + \ | |
(parse_array == label_map["right_shoe"]).astype(np.float32) + \ | |
(parse_array == label_map["hat"]).astype(np.float32) + \ | |
(parse_array == label_map["sunglasses"]).astype(np.float32) + \ | |
(parse_array == label_map["scarf"]).astype(np.float32) + \ | |
(parse_array == label_map["bag"]).astype(np.float32) | |
parser_mask_changeable = (parse_array == label_map["background"]).astype(np.float32) | |
arms = (parse_array == 14).astype(np.float32) + (parse_array == 15).astype(np.float32) | |
category = str(dataroot.name) | |
if category == 'dresses': | |
label_cat = 7 | |
parse_cloth = (parse_array == 7).astype(np.float32) | |
parse_mask = (parse_array == 7).astype(np.float32) + \ | |
(parse_array == 12).astype(np.float32) + \ | |
(parse_array == 13).astype(np.float32) | |
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed)) | |
elif category == 'upper_body': | |
label_cat = 4 | |
parse_cloth = (parse_array == 4).astype(np.float32) | |
parse_mask = (parse_array == 4).astype(np.float32) | |
parser_mask_fixed += (parse_array == label_map["skirt"]).astype(np.float32) + \ | |
(parse_array == label_map["pants"]).astype(np.float32) | |
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed)) | |
elif category == 'lower_body': | |
label_cat = 6 | |
parse_cloth = (parse_array == 6).astype(np.float32) | |
parse_mask = (parse_array == 6).astype(np.float32) + \ | |
(parse_array == 12).astype(np.float32) + \ | |
(parse_array == 13).astype(np.float32) | |
parser_mask_fixed += (parse_array == label_map["upper_clothes"]).astype(np.float32) + \ | |
(parse_array == 14).astype(np.float32) + \ | |
(parse_array == 15).astype(np.float32) | |
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed)) | |
else: | |
raise NotImplementedError | |
parse_head = torch.from_numpy(parse_head) # [0,1] | |
parse_cloth = torch.from_numpy(parse_cloth) # [0,1] | |
parse_mask = torch.from_numpy(parse_mask) # [0,1] | |
parser_mask_fixed = torch.from_numpy(parser_mask_fixed) | |
parser_mask_changeable = torch.from_numpy(parser_mask_changeable) | |
# dilation | |
parse_without_cloth = np.logical_and(parse_shape, np.logical_not(parse_mask)) | |
parse_mask = parse_mask.cpu().numpy() | |
if "im_head" in self.outputlist: | |
# Masked cloth | |
im_head = image * parse_head - (1 - parse_head) | |
if "im_cloth" in self.outputlist: | |
im_cloth = image * parse_cloth + (1 - parse_cloth) | |
# Shape | |
parse_shape = Image.fromarray((parse_shape * 255).astype(np.uint8)) | |
parse_shape = parse_shape.resize((self.width // 16, self.height // 16), Image.BILINEAR) | |
parse_shape = parse_shape.resize((self.width, self.height), Image.BILINEAR) | |
shape = self.transform2D(parse_shape) # [-1,1] | |
# Load pose points | |
pose_name = im_name.replace('_0.jpg', '_2.json') | |
with open(dataroot / 'keypoints' / pose_name, 'r') as f: | |
pose_label = json.load(f) | |
pose_data = pose_label['keypoints'] | |
pose_data = np.array(pose_data) | |
pose_data = pose_data.reshape((-1, 4)) | |
point_num = pose_data.shape[0] | |
pose_map = torch.zeros(point_num, self.height, self.width) | |
r = self.radius * (self.height / 512.0) | |
im_pose = Image.new('L', (self.width, self.height)) | |
pose_draw = ImageDraw.Draw(im_pose) | |
neck = Image.new('L', (self.width, self.height)) | |
neck_draw = ImageDraw.Draw(neck) | |
for i in range(point_num): | |
one_map = Image.new('L', (self.width, self.height)) | |
draw = ImageDraw.Draw(one_map) | |
point_x = np.multiply(pose_data[i, 0], self.width / 384.0) | |
point_y = np.multiply(pose_data[i, 1], self.height / 512.0) | |
if point_x > 1 and point_y > 1: | |
draw.rectangle((point_x - r, point_y - r, point_x + r, point_y + r), 'white', 'white') | |
pose_draw.rectangle((point_x - r, point_y - r, point_x + r, point_y + r), 'white', 'white') | |
if i == 2 or i == 5: | |
neck_draw.ellipse((point_x - r * 4, point_y - r * 4, point_x + r * 4, point_y + r * 4), 'white', | |
'white') | |
one_map = self.transform2D(one_map) | |
pose_map[i] = one_map[0] | |
d = [] | |
for pose_d in pose_data: | |
ux = pose_d[0] / 384.0 | |
uy = pose_d[1] / 512.0 | |
# scale posemap points | |
px = ux * self.width | |
py = uy * self.height | |
d.append(kpoint_to_heatmap(np.array([px, py]), (self.height, self.width), 9)) | |
pose_map = torch.stack(d) | |
# just for visualization | |
im_pose = self.transform2D(im_pose) | |
im_arms = Image.new('L', (self.width, self.height)) | |
arms_draw = ImageDraw.Draw(im_arms) | |
if category == 'dresses' or category == 'upper_body' or category == 'lower_body': | |
with open(dataroot / 'keypoints' / pose_name, 'r') as f: | |
data = json.load(f) | |
shoulder_right = np.multiply(tuple(data['keypoints'][2][:2]), self.height / 512.0) | |
shoulder_left = np.multiply(tuple(data['keypoints'][5][:2]), self.height / 512.0) | |
elbow_right = np.multiply(tuple(data['keypoints'][3][:2]), self.height / 512.0) | |
elbow_left = np.multiply(tuple(data['keypoints'][6][:2]), self.height / 512.0) | |
wrist_right = np.multiply(tuple(data['keypoints'][4][:2]), self.height / 512.0) | |
wrist_left = np.multiply(tuple(data['keypoints'][7][:2]), self.height / 512.0) | |
if wrist_right[0] <= 1. and wrist_right[1] <= 1.: | |
if elbow_right[0] <= 1. and elbow_right[1] <= 1.: | |
arms_draw.line( | |
np.concatenate((wrist_left, elbow_left, shoulder_left, shoulder_right)).astype( | |
np.uint16).tolist(), 'white', 45, 'curve') | |
else: | |
arms_draw.line(np.concatenate( | |
(wrist_left, elbow_left, shoulder_left, shoulder_right, elbow_right)).astype( | |
np.uint16).tolist(), 'white', 45, 'curve') | |
elif wrist_left[0] <= 1. and wrist_left[1] <= 1.: | |
if elbow_left[0] <= 1. and elbow_left[1] <= 1.: | |
arms_draw.line( | |
np.concatenate((shoulder_left, shoulder_right, elbow_right, wrist_right)).astype( | |
np.uint16).tolist(), 'white', 45, 'curve') | |
else: | |
arms_draw.line(np.concatenate( | |
(elbow_left, shoulder_left, shoulder_right, elbow_right, wrist_right)).astype( | |
np.uint16).tolist(), 'white', 45, 'curve') | |
else: | |
arms_draw.line(np.concatenate( | |
(wrist_left, elbow_left, shoulder_left, shoulder_right, elbow_right, wrist_right)).astype( | |
np.uint16).tolist(), 'white', 45, 'curve') | |
hands = np.logical_and(np.logical_not(im_arms), arms) | |
if category == 'dresses' or category == 'upper_body': | |
parse_mask += im_arms | |
parser_mask_fixed += hands | |
# delete neck | |
parse_head_2 = torch.clone(parse_head) | |
if category == 'dresses' or category == 'upper_body': | |
with open(dataroot / 'keypoints' / pose_name, 'r') as f: | |
data = json.load(f) | |
points = [] | |
points.append(np.multiply(tuple(data['keypoints'][2][:2]), self.height / 512.0)) | |
points.append(np.multiply(tuple(data['keypoints'][5][:2]), self.height / 512.0)) | |
x_coords, y_coords = zip(*points) | |
A = np.vstack([x_coords, np.ones(len(x_coords))]).T | |
m, c = np.linalg.lstsq(A, y_coords, rcond=None)[0] | |
for i in range(parse_array.shape[1]): | |
y = i * m + c | |
parse_head_2[int(y - 20 * (self.height / 512.0)):, i] = 0 | |
parser_mask_fixed = np.logical_or(parser_mask_fixed, np.array(parse_head_2, dtype=np.uint16)) | |
parse_mask += np.logical_or(parse_mask, np.logical_and(np.array(parse_head, dtype=np.uint16), | |
np.logical_not( | |
np.array(parse_head_2, dtype=np.uint16)))) | |
# tune the amount of dilation here | |
parse_mask = cv2.dilate(parse_mask, np.ones((5, 5), np.uint16), iterations=5) | |
parse_mask = np.logical_and(parser_mask_changeable, np.logical_not(parse_mask)) | |
parse_mask_total = np.logical_or(parse_mask, parser_mask_fixed) | |
im_mask = image * parse_mask_total | |
inpaint_mask = 1 - parse_mask_total | |
# here we have to modify the mask and get the bounding box | |
bboxes = masks_to_boxes(inpaint_mask.unsqueeze(0)) | |
bboxes = bboxes.type(torch.int32) # xmin, ymin, xmax, ymax format | |
xmin = bboxes[0, 0] | |
xmax = bboxes[0, 2] | |
ymin = bboxes[0, 1] | |
ymax = bboxes[0, 3] | |
inpaint_mask[ymin:ymax + 1, xmin:xmax + 1] = torch.logical_and( | |
torch.ones_like(inpaint_mask[ymin:ymax + 1, xmin:xmax + 1]), | |
torch.logical_not(parser_mask_fixed[ymin:ymax + 1, xmin:xmax + 1])) | |
inpaint_mask = inpaint_mask.unsqueeze(0) | |
im_mask = image * np.logical_not(inpaint_mask.repeat(3, 1, 1)) | |
parse_mask_total = parse_mask_total.numpy() | |
parse_mask_total = parse_array * parse_mask_total | |
parse_mask_total = torch.from_numpy(parse_mask_total) | |
if "stitch_label" in self.outputlist: | |
stitch_labelmap = Image.open(self.dataroot / 'test_stitchmap' / im_name.replace(".jpg", ".png")) | |
stitch_labelmap = transforms.ToTensor()(stitch_labelmap) * 255 | |
stitch_label = stitch_labelmap == 13 | |
result = {} | |
for k in self.outputlist: | |
result[k] = vars()[k] | |
# Output interpretation | |
# "c_name" -> filename of inshop cloth | |
# "im_name" -> filename of model with cloth | |
# "cloth" -> img of inshop cloth | |
# "image" -> img of the model with that cloth | |
# "im_cloth" -> cut cloth from the model | |
# "im_mask" -> black mask of the cloth in the model img | |
# "cloth_sketch" -> sketch of the inshop cloth | |
# "im_sketch" -> sketch of "im_cloth" | |
# ... | |
return result | |
def __len__(self): | |
return len(self.c_names) | |