Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,11 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
import torch
|
4 |
import streamlit as st
|
5 |
from PIL import Image
|
6 |
from accelerate import Accelerator
|
7 |
from diffusers import DDIMScheduler, AutoencoderKL
|
8 |
from transformers import CLIPTextModel, CLIPTokenizer
|
9 |
-
from src.mgd_pipelines.mgd_pipe import MGDPipe
|
10 |
from src.mgd_pipelines.mgd_pipe_disentangled import MGDPipeDisentangled
|
11 |
from src.utils.set_seeds import set_seed
|
12 |
from src.utils.image_from_pipe import generate_images_from_mgd_pipe
|
@@ -17,8 +16,7 @@ os.environ["TOKENIZERS_PARALLELISM"] = "true"
|
|
17 |
os.environ["WANDB_START_METHOD"] = "thread"
|
18 |
|
19 |
# Function to process inputs and run inference
|
20 |
-
def run_inference(prompt, sketch_image=None, category="dresses", seed=
|
21 |
-
# Initialize accelerator
|
22 |
accelerator = Accelerator(mixed_precision=mixed_precision)
|
23 |
device = accelerator.device
|
24 |
|
@@ -26,39 +24,35 @@ def run_inference(prompt, sketch_image=None, category="dresses", seed=None, mixe
|
|
26 |
tokenizer = CLIPTokenizer.from_pretrained("microsoft/xclip-base-patch32", subfolder="tokenizer")
|
27 |
text_encoder = CLIPTextModel.from_pretrained("microsoft/xclip-base-patch32", subfolder="text_encoder")
|
28 |
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", subfolder="vae")
|
29 |
-
val_scheduler = DDIMScheduler.from_pretrained("
|
30 |
|
31 |
-
# Load UNet (assumed pretrained)
|
32 |
unet = torch.hub.load("aimagelab/multimodal-garment-designer", "mgd", pretrained=True)
|
33 |
|
34 |
-
# Freeze VAE and text encoder
|
35 |
vae.requires_grad_(False)
|
36 |
text_encoder.requires_grad_(False)
|
37 |
|
38 |
-
# Set seed for reproducibility
|
39 |
if seed is not None:
|
40 |
set_seed(seed)
|
41 |
|
42 |
-
# Load appropriate dataset
|
43 |
category = [category]
|
44 |
test_dataset = DressCodeDataset(
|
45 |
-
dataroot_path="
|
|
|
|
|
|
|
46 |
)
|
47 |
|
48 |
test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False)
|
49 |
|
50 |
-
# Move models to the device
|
51 |
text_encoder.to(device)
|
52 |
vae.to(device)
|
53 |
unet.to(device).eval()
|
54 |
|
55 |
-
# Handle sketch and text inputs
|
56 |
if sketch_image is not None:
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
|
61 |
-
# Select pipeline (disentangled if required)
|
62 |
val_pipe = MGDPipeDisentangled(
|
63 |
text_encoder=text_encoder,
|
64 |
vae=vae,
|
@@ -69,41 +63,35 @@ def run_inference(prompt, sketch_image=None, category="dresses", seed=None, mixe
|
|
69 |
|
70 |
val_pipe.enable_attention_slicing()
|
71 |
|
72 |
-
# Generate image
|
73 |
generated_images = generate_images_from_mgd_pipe(
|
74 |
test_dataloader=test_dataloader,
|
75 |
pipe=val_pipe,
|
76 |
guidance_scale=7.5,
|
77 |
seed=seed,
|
78 |
sketch_image=sketch_tensor if sketch_image is not None else None,
|
79 |
-
prompt=prompt
|
80 |
)
|
81 |
|
82 |
-
return generated_images[0]
|
83 |
|
84 |
# Streamlit UI
|
85 |
st.title("Fashion Image Generator")
|
86 |
st.write("Generate colorful fashion images based on a rough sketch and/or a text prompt.")
|
87 |
|
88 |
-
# Upload a sketch image
|
89 |
uploaded_sketch = st.file_uploader("Upload a rough sketch (optional)", type=["png", "jpg", "jpeg"])
|
90 |
-
|
91 |
-
# Text input for prompt
|
92 |
prompt = st.text_input("Enter a prompt (optional)", "A red dress with floral patterns")
|
93 |
-
|
94 |
-
# Input options
|
95 |
category = st.text_input("Enter category (optional):", "dresses")
|
96 |
-
seed = st.slider("Seed", min_value=1, max_value=100, step=1, value=
|
97 |
precision = st.selectbox("Select precision:", ["fp16", "fp32"])
|
98 |
|
99 |
-
# Show uploaded sketch image
|
100 |
if uploaded_sketch is not None:
|
101 |
sketch_image = Image.open(uploaded_sketch)
|
102 |
st.image(sketch_image, caption="Uploaded Sketch", use_column_width=True)
|
103 |
|
104 |
-
# Button to generate image
|
105 |
if st.button("Generate Image"):
|
106 |
with st.spinner("Generating image..."):
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
1 |
import os
|
2 |
+
import numpy as np # Corrected import
|
3 |
import torch
|
4 |
import streamlit as st
|
5 |
from PIL import Image
|
6 |
from accelerate import Accelerator
|
7 |
from diffusers import DDIMScheduler, AutoencoderKL
|
8 |
from transformers import CLIPTextModel, CLIPTokenizer
|
|
|
9 |
from src.mgd_pipelines.mgd_pipe_disentangled import MGDPipeDisentangled
|
10 |
from src.utils.set_seeds import set_seed
|
11 |
from src.utils.image_from_pipe import generate_images_from_mgd_pipe
|
|
|
16 |
os.environ["WANDB_START_METHOD"] = "thread"
|
17 |
|
18 |
# Function to process inputs and run inference
|
19 |
+
def run_inference(prompt, sketch_image=None, category="dresses", seed=1, mixed_precision="fp16"):
|
|
|
20 |
accelerator = Accelerator(mixed_precision=mixed_precision)
|
21 |
device = accelerator.device
|
22 |
|
|
|
24 |
tokenizer = CLIPTokenizer.from_pretrained("microsoft/xclip-base-patch32", subfolder="tokenizer")
|
25 |
text_encoder = CLIPTextModel.from_pretrained("microsoft/xclip-base-patch32", subfolder="text_encoder")
|
26 |
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", subfolder="vae")
|
27 |
+
val_scheduler = DDIMScheduler.from_pretrained("stabilityai/sd-scheduler", subfolder="scheduler")
|
28 |
|
|
|
29 |
unet = torch.hub.load("aimagelab/multimodal-garment-designer", "mgd", pretrained=True)
|
30 |
|
|
|
31 |
vae.requires_grad_(False)
|
32 |
text_encoder.requires_grad_(False)
|
33 |
|
|
|
34 |
if seed is not None:
|
35 |
set_seed(seed)
|
36 |
|
|
|
37 |
category = [category]
|
38 |
test_dataset = DressCodeDataset(
|
39 |
+
dataroot_path="assets\data\dresscode", # Replace with actual dataset path
|
40 |
+
phase="test",
|
41 |
+
category=category,
|
42 |
+
size=(512, 384),
|
43 |
)
|
44 |
|
45 |
test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False)
|
46 |
|
|
|
47 |
text_encoder.to(device)
|
48 |
vae.to(device)
|
49 |
unet.to(device).eval()
|
50 |
|
|
|
51 |
if sketch_image is not None:
|
52 |
+
sketch_tensor = (
|
53 |
+
torch.tensor(np.array(sketch_image)).permute(2, 0, 1).unsqueeze(0).float().to(device) / 255.0
|
54 |
+
)
|
55 |
|
|
|
56 |
val_pipe = MGDPipeDisentangled(
|
57 |
text_encoder=text_encoder,
|
58 |
vae=vae,
|
|
|
63 |
|
64 |
val_pipe.enable_attention_slicing()
|
65 |
|
|
|
66 |
generated_images = generate_images_from_mgd_pipe(
|
67 |
test_dataloader=test_dataloader,
|
68 |
pipe=val_pipe,
|
69 |
guidance_scale=7.5,
|
70 |
seed=seed,
|
71 |
sketch_image=sketch_tensor if sketch_image is not None else None,
|
72 |
+
prompt=prompt,
|
73 |
)
|
74 |
|
75 |
+
return Image.fromarray((generated_images[0] * 255).astype("uint8"))
|
76 |
|
77 |
# Streamlit UI
|
78 |
st.title("Fashion Image Generator")
|
79 |
st.write("Generate colorful fashion images based on a rough sketch and/or a text prompt.")
|
80 |
|
|
|
81 |
uploaded_sketch = st.file_uploader("Upload a rough sketch (optional)", type=["png", "jpg", "jpeg"])
|
|
|
|
|
82 |
prompt = st.text_input("Enter a prompt (optional)", "A red dress with floral patterns")
|
|
|
|
|
83 |
category = st.text_input("Enter category (optional):", "dresses")
|
84 |
+
seed = st.slider("Seed", min_value=1, max_value=100, step=1, value=1)
|
85 |
precision = st.selectbox("Select precision:", ["fp16", "fp32"])
|
86 |
|
|
|
87 |
if uploaded_sketch is not None:
|
88 |
sketch_image = Image.open(uploaded_sketch)
|
89 |
st.image(sketch_image, caption="Uploaded Sketch", use_column_width=True)
|
90 |
|
|
|
91 |
if st.button("Generate Image"):
|
92 |
with st.spinner("Generating image..."):
|
93 |
+
try:
|
94 |
+
result_image = run_inference(prompt, sketch_image, category, seed, precision)
|
95 |
+
st.image(result_image, caption="Generated Image", use_column_width=True)
|
96 |
+
except Exception as e:
|
97 |
+
st.error(f"An error occurred: {e}")
|