Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,95 +1,109 @@
|
|
1 |
import os
|
|
|
2 |
import torch
|
3 |
import streamlit as st
|
4 |
-
from
|
|
|
|
|
5 |
from transformers import CLIPTextModel, CLIPTokenizer
|
6 |
from src.mgd_pipelines.mgd_pipe import MGDPipe
|
7 |
from src.mgd_pipelines.mgd_pipe_disentangled import MGDPipeDisentangled
|
8 |
-
from src.utils.image_from_pipe import generate_images_from_mgd_pipe
|
9 |
-
from accelerate import Accelerator
|
10 |
-
from diffusers.utils import check_min_version
|
11 |
from src.utils.set_seeds import set_seed
|
|
|
|
|
12 |
|
13 |
-
#
|
14 |
-
check_min_version("0.10.0.dev0")
|
15 |
-
|
16 |
-
# Set the environment variables for Hugging Face Spaces
|
17 |
os.environ["TOKENIZERS_PARALLELISM"] = "true"
|
18 |
os.environ["WANDB_START_METHOD"] = "thread"
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
category = st.selectbox("Select Category", ["dresses", "upper_body", "lower_body", "all"])
|
25 |
-
guidance_scale = st.slider("Guidance Scale", min_value=0.1, max_value=20.0, value=7.5, step=0.1)
|
26 |
-
guidance_scale_pose = st.slider("Guidance Scale (Pose)", min_value=0.1, max_value=20.0, value=7.5, step=0.1)
|
27 |
-
guidance_scale_sketch = st.slider("Guidance Scale (Sketch)", min_value=0.1, max_value=20.0, value=7.5, step=0.1)
|
28 |
-
sketch_cond_rate = st.slider("Sketch Conditioning Rate", min_value=0.1, max_value=1.0, value=0.5, step=0.05)
|
29 |
-
start_cond_rate = st.slider("Start Conditioning Rate", min_value=0.1, max_value=1.0, value=0.5, step=0.05)
|
30 |
-
seed = st.number_input("Seed", value=42, min_value=1)
|
31 |
-
|
32 |
-
# Button to run the image generation
|
33 |
-
if st.button("Generate Image"):
|
34 |
-
# Initialize Accelerator (for mixed precision, etc.)
|
35 |
-
accelerator = Accelerator()
|
36 |
device = accelerator.device
|
37 |
|
38 |
-
#
|
39 |
-
|
|
|
|
|
|
|
40 |
|
41 |
-
#
|
42 |
-
|
43 |
|
44 |
-
#
|
45 |
-
|
46 |
-
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
|
52 |
-
# Load
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
source="github",
|
57 |
-
model="mgd",
|
58 |
-
pretrained=True,
|
59 |
)
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
64 |
|
65 |
-
#
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
text_encoder=text_encoder,
|
68 |
vae=vae,
|
69 |
-
unet=unet
|
70 |
tokenizer=tokenizer,
|
71 |
scheduler=val_scheduler,
|
72 |
).to(device)
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import pandas as np
|
3 |
import torch
|
4 |
import streamlit as st
|
5 |
+
from PIL import Image
|
6 |
+
from accelerate import Accelerator
|
7 |
+
from diffusers import DDIMScheduler, AutoencoderKL
|
8 |
from transformers import CLIPTextModel, CLIPTokenizer
|
9 |
from src.mgd_pipelines.mgd_pipe import MGDPipe
|
10 |
from src.mgd_pipelines.mgd_pipe_disentangled import MGDPipeDisentangled
|
|
|
|
|
|
|
11 |
from src.utils.set_seeds import set_seed
|
12 |
+
from src.utils.image_from_pipe import generate_images_from_mgd_pipe
|
13 |
+
from datasets.dresscode import DressCodeDataset
|
14 |
|
15 |
+
# Set environment variables
|
|
|
|
|
|
|
16 |
os.environ["TOKENIZERS_PARALLELISM"] = "true"
|
17 |
os.environ["WANDB_START_METHOD"] = "thread"
|
18 |
|
19 |
+
# Function to process inputs and run inference
|
20 |
+
def run_inference(prompt, sketch_image=None, category="dresses", seed=None, mixed_precision="fp16"):
|
21 |
+
# Initialize accelerator
|
22 |
+
accelerator = Accelerator(mixed_precision=mixed_precision)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
device = accelerator.device
|
24 |
|
25 |
+
# Load models and datasets
|
26 |
+
tokenizer = CLIPTokenizer.from_pretrained("microsoft/xclip-base-patch32", subfolder="tokenizer")
|
27 |
+
text_encoder = CLIPTextModel.from_pretrained("microsoft/xclip-base-patch32", subfolder="text_encoder")
|
28 |
+
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", subfolder="vae")
|
29 |
+
val_scheduler = DDIMScheduler.from_pretrained("ptx0/pseudo-journey-v2", subfolder="scheduler")
|
30 |
|
31 |
+
# Load UNet (assumed pretrained)
|
32 |
+
unet = torch.hub.load("aimagelab/multimodal-garment-designer", "mgd", pretrained=True)
|
33 |
|
34 |
+
# Freeze VAE and text encoder
|
35 |
+
vae.requires_grad_(False)
|
36 |
+
text_encoder.requires_grad_(False)
|
37 |
|
38 |
+
# Set seed for reproducibility
|
39 |
+
if seed is not None:
|
40 |
+
set_seed(seed)
|
41 |
|
42 |
+
# Load appropriate dataset
|
43 |
+
category = [category]
|
44 |
+
test_dataset = DressCodeDataset(
|
45 |
+
dataroot_path="path_to_dataset", phase="test", category=category, size=(512, 384)
|
|
|
|
|
|
|
46 |
)
|
47 |
|
48 |
+
test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False)
|
49 |
+
|
50 |
+
# Move models to the device
|
51 |
+
text_encoder.to(device)
|
52 |
+
vae.to(device)
|
53 |
+
unet.to(device).eval()
|
54 |
|
55 |
+
# Handle sketch and text inputs
|
56 |
+
if sketch_image is not None:
|
57 |
+
# Process the sketch (resize, normalize, etc.)
|
58 |
+
sketch_image = sketch_image.resize((512, 384))
|
59 |
+
sketch_tensor = torch.tensor(np.array(sketch_image)).unsqueeze(0).float().to(device)
|
60 |
+
|
61 |
+
# Select pipeline (disentangled if required)
|
62 |
+
val_pipe = MGDPipeDisentangled(
|
63 |
text_encoder=text_encoder,
|
64 |
vae=vae,
|
65 |
+
unet=unet,
|
66 |
tokenizer=tokenizer,
|
67 |
scheduler=val_scheduler,
|
68 |
).to(device)
|
69 |
|
70 |
+
val_pipe.enable_attention_slicing()
|
71 |
+
|
72 |
+
# Generate image
|
73 |
+
generated_images = generate_images_from_mgd_pipe(
|
74 |
+
test_dataloader=test_dataloader,
|
75 |
+
pipe=val_pipe,
|
76 |
+
guidance_scale=7.5,
|
77 |
+
seed=seed,
|
78 |
+
sketch_image=sketch_tensor if sketch_image is not None else None,
|
79 |
+
prompt=prompt
|
80 |
+
)
|
81 |
+
|
82 |
+
return generated_images[0] # Assuming single image output
|
83 |
+
|
84 |
+
# Streamlit UI
|
85 |
+
st.title("Fashion Image Generator")
|
86 |
+
st.write("Generate colorful fashion images based on a rough sketch and/or a text prompt.")
|
87 |
+
|
88 |
+
# Upload a sketch image
|
89 |
+
uploaded_sketch = st.file_uploader("Upload a rough sketch (optional)", type=["png", "jpg", "jpeg"])
|
90 |
+
|
91 |
+
# Text input for prompt
|
92 |
+
prompt = st.text_input("Enter a prompt (optional)", "A red dress with floral patterns")
|
93 |
+
|
94 |
+
# Input options
|
95 |
+
category = st.text_input("Enter category (optional):", "dresses")
|
96 |
+
seed = st.slider("Seed", min_value=1, max_value=100, step=1, value=None)
|
97 |
+
precision = st.selectbox("Select precision:", ["fp16", "fp32"])
|
98 |
+
|
99 |
+
# Show uploaded sketch image
|
100 |
+
if uploaded_sketch is not None:
|
101 |
+
sketch_image = Image.open(uploaded_sketch)
|
102 |
+
st.image(sketch_image, caption="Uploaded Sketch", use_column_width=True)
|
103 |
+
|
104 |
+
# Button to generate image
|
105 |
+
if st.button("Generate Image"):
|
106 |
+
with st.spinner("Generating image..."):
|
107 |
+
# Run inference with sketch or prompt (or both)
|
108 |
+
result_image = run_inference(prompt, sketch_image, category, seed, precision)
|
109 |
+
st.image(result_image, caption="Generated Image", use_column_width=True)
|