Spaces:
Sleeping
Sleeping
Update src/eval.py
Browse files- src/eval.py +71 -74
src/eval.py
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
import os
|
2 |
|
3 |
-
#
|
4 |
import torch
|
5 |
-
import torch.utils.checkpoint
|
6 |
-
import torch.utils.checkpoint
|
7 |
from accelerate import Accelerator
|
8 |
from accelerate.logging import get_logger
|
9 |
from diffusers import AutoencoderKL, DDIMScheduler
|
@@ -11,16 +9,15 @@ from diffusers.utils import check_min_version
|
|
11 |
from diffusers.utils.import_utils import is_xformers_available
|
12 |
from transformers import CLIPTextModel, CLIPTokenizer
|
13 |
|
14 |
-
#
|
15 |
from src.datasets.dresscode import DressCodeDataset
|
16 |
from src.datasets.vitonhd import VitonHDDataset
|
17 |
from src.mgd_pipelines.mgd_pipe import MGDPipe
|
18 |
from src.mgd_pipelines.mgd_pipe_disentangled import MGDPipeDisentangled
|
19 |
-
from src.utils.arg_parser import eval_parse_args
|
20 |
from src.utils.image_from_pipe import generate_images_from_mgd_pipe
|
21 |
from src.utils.set_seeds import set_seed
|
22 |
|
23 |
-
#
|
24 |
check_min_version("0.10.0.dev0")
|
25 |
|
26 |
logger = get_logger(__name__, log_level="INFO")
|
@@ -28,139 +25,139 @@ os.environ["TOKENIZERS_PARALLELISM"] = "true"
|
|
28 |
os.environ["WANDB_START_METHOD"] = "thread"
|
29 |
|
30 |
|
31 |
-
def main()
|
32 |
-
|
33 |
-
accelerator = Accelerator(
|
34 |
-
mixed_precision=args.mixed_precision,
|
35 |
-
)
|
36 |
device = accelerator.device
|
37 |
|
38 |
# Set the training seed
|
39 |
-
if args.seed is not None:
|
40 |
-
set_seed(args
|
41 |
|
42 |
# Load scheduler, tokenizer, and models
|
43 |
-
val_scheduler = DDIMScheduler.from_pretrained(args
|
44 |
val_scheduler.set_timesteps(50, device=device)
|
45 |
|
46 |
tokenizer = CLIPTokenizer.from_pretrained(
|
47 |
-
args
|
48 |
)
|
49 |
text_encoder = CLIPTextModel.from_pretrained(
|
50 |
-
args
|
51 |
)
|
52 |
-
vae = AutoencoderKL.from_pretrained(args
|
53 |
|
54 |
-
# Load
|
55 |
unet = torch.hub.load(
|
56 |
-
dataset=args.dataset,
|
57 |
repo_or_dir="aimagelab/multimodal-garment-designer",
|
58 |
source="github",
|
59 |
model="mgd",
|
60 |
pretrained=True,
|
61 |
)
|
62 |
|
63 |
-
# Freeze
|
64 |
vae.requires_grad_(False)
|
65 |
text_encoder.requires_grad_(False)
|
66 |
|
67 |
# Enable memory efficient attention if requested
|
68 |
-
if args.enable_xformers_memory_efficient_attention:
|
69 |
if is_xformers_available():
|
70 |
unet.enable_xformers_memory_efficient_attention()
|
71 |
else:
|
72 |
-
raise ValueError("xformers is not available.
|
73 |
|
74 |
-
# Set
|
75 |
-
category = [args.category
|
76 |
|
77 |
-
# Load
|
78 |
-
if args
|
79 |
test_dataset = DressCodeDataset(
|
80 |
-
dataroot_path=args
|
81 |
phase="test",
|
82 |
-
order=args.test_order,
|
83 |
radius=5,
|
84 |
sketch_threshold_range=(20, 20),
|
85 |
tokenizer=tokenizer,
|
86 |
category=category,
|
87 |
size=(512, 384),
|
88 |
)
|
89 |
-
elif args
|
90 |
test_dataset = VitonHDDataset(
|
91 |
-
dataroot_path=args
|
92 |
phase="test",
|
93 |
-
order=args.test_order,
|
94 |
sketch_threshold_range=(20, 20),
|
95 |
radius=5,
|
96 |
tokenizer=tokenizer,
|
97 |
size=(512, 384),
|
98 |
)
|
99 |
else:
|
100 |
-
raise NotImplementedError(f"Dataset {args
|
101 |
|
102 |
-
# Prepare
|
103 |
test_dataloader = torch.utils.data.DataLoader(
|
104 |
test_dataset,
|
105 |
shuffle=False,
|
106 |
-
batch_size=args.batch_size,
|
107 |
-
num_workers=args.num_workers_test,
|
108 |
)
|
109 |
|
110 |
-
# Cast
|
111 |
-
weight_dtype = torch.float32 if args.mixed_precision != "fp16" else torch.float16
|
112 |
text_encoder.to(device, dtype=weight_dtype)
|
113 |
vae.to(device, dtype=weight_dtype)
|
114 |
-
|
115 |
-
# Ensure unet is in eval mode
|
116 |
unet.eval()
|
117 |
|
118 |
-
# Select
|
119 |
with torch.inference_mode():
|
120 |
-
if args.disentagle
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
val_pipe = MGDPipe(
|
130 |
-
text_encoder=text_encoder,
|
131 |
-
vae=vae,
|
132 |
-
unet=unet.to(vae.dtype),
|
133 |
-
tokenizer=tokenizer,
|
134 |
-
scheduler=val_scheduler,
|
135 |
-
).to(device)
|
136 |
-
|
137 |
-
# Debugging: Ensure val_pipe is callable
|
138 |
-
assert callable(val_pipe), "The pipeline object (val_pipe) is not callable. Check MGDPipe implementation."
|
139 |
-
|
140 |
-
# Enable attention slicing for memory efficiency
|
141 |
val_pipe.enable_attention_slicing()
|
142 |
|
143 |
# Prepare dataloader with accelerator
|
144 |
test_dataloader = accelerator.prepare(test_dataloader)
|
145 |
|
146 |
-
#
|
|
|
147 |
generate_images_from_mgd_pipe(
|
148 |
-
test_order=args.test_order,
|
149 |
pipe=val_pipe,
|
150 |
test_dataloader=test_dataloader,
|
151 |
-
save_name=args.save_name,
|
152 |
-
dataset=args
|
153 |
-
output_dir=args
|
154 |
-
guidance_scale=args.guidance_scale,
|
155 |
-
guidance_scale_pose=args.guidance_scale_pose,
|
156 |
-
guidance_scale_sketch=args.guidance_scale_sketch,
|
157 |
-
sketch_cond_rate=args.sketch_cond_rate,
|
158 |
-
start_cond_rate=args.start_cond_rate,
|
159 |
no_pose=False,
|
160 |
-
disentagle=args.disentagle,
|
161 |
-
seed=args.seed,
|
162 |
)
|
163 |
|
|
|
|
|
|
|
164 |
|
165 |
if __name__ == "__main__":
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
|
3 |
+
# External libraries
|
4 |
import torch
|
|
|
|
|
5 |
from accelerate import Accelerator
|
6 |
from accelerate.logging import get_logger
|
7 |
from diffusers import AutoencoderKL, DDIMScheduler
|
|
|
9 |
from diffusers.utils.import_utils import is_xformers_available
|
10 |
from transformers import CLIPTextModel, CLIPTokenizer
|
11 |
|
12 |
+
# Custom imports
|
13 |
from src.datasets.dresscode import DressCodeDataset
|
14 |
from src.datasets.vitonhd import VitonHDDataset
|
15 |
from src.mgd_pipelines.mgd_pipe import MGDPipe
|
16 |
from src.mgd_pipelines.mgd_pipe_disentangled import MGDPipeDisentangled
|
|
|
17 |
from src.utils.image_from_pipe import generate_images_from_mgd_pipe
|
18 |
from src.utils.set_seeds import set_seed
|
19 |
|
20 |
+
# Ensure the minimum version of diffusers is installed
|
21 |
check_min_version("0.10.0.dev0")
|
22 |
|
23 |
logger = get_logger(__name__, log_level="INFO")
|
|
|
25 |
os.environ["WANDB_START_METHOD"] = "thread"
|
26 |
|
27 |
|
28 |
+
def main(args):
|
29 |
+
# Initialize Accelerator
|
30 |
+
accelerator = Accelerator(mixed_precision=args.get("mixed_precision", "fp16"))
|
|
|
|
|
31 |
device = accelerator.device
|
32 |
|
33 |
# Set the training seed
|
34 |
+
if args.get("seed") is not None:
|
35 |
+
set_seed(args["seed"])
|
36 |
|
37 |
# Load scheduler, tokenizer, and models
|
38 |
+
val_scheduler = DDIMScheduler.from_pretrained(args["pretrained_model_name_or_path"], subfolder="scheduler")
|
39 |
val_scheduler.set_timesteps(50, device=device)
|
40 |
|
41 |
tokenizer = CLIPTokenizer.from_pretrained(
|
42 |
+
args["pretrained_model_name_or_path"], subfolder="tokenizer", revision=args.get("revision", None)
|
43 |
)
|
44 |
text_encoder = CLIPTextModel.from_pretrained(
|
45 |
+
args["pretrained_model_name_or_path"], subfolder="text_encoder", revision=args.get("revision", None)
|
46 |
)
|
47 |
+
vae = AutoencoderKL.from_pretrained(args["pretrained_model_name_or_path"], subfolder="vae", revision=args.get("revision", None))
|
48 |
|
49 |
+
# Load UNet
|
50 |
unet = torch.hub.load(
|
|
|
51 |
repo_or_dir="aimagelab/multimodal-garment-designer",
|
52 |
source="github",
|
53 |
model="mgd",
|
54 |
pretrained=True,
|
55 |
)
|
56 |
|
57 |
+
# Freeze models
|
58 |
vae.requires_grad_(False)
|
59 |
text_encoder.requires_grad_(False)
|
60 |
|
61 |
# Enable memory efficient attention if requested
|
62 |
+
if args.get("enable_xformers_memory_efficient_attention", False):
|
63 |
if is_xformers_available():
|
64 |
unet.enable_xformers_memory_efficient_attention()
|
65 |
else:
|
66 |
+
raise ValueError("xformers is not available. Install it to enable memory-efficient attention.")
|
67 |
|
68 |
+
# Set dataset category
|
69 |
+
category = [args.get("category", "dresses")]
|
70 |
|
71 |
+
# Load dataset
|
72 |
+
if args["dataset"] == "dresscode":
|
73 |
test_dataset = DressCodeDataset(
|
74 |
+
dataroot_path=args["dataset_path"],
|
75 |
phase="test",
|
76 |
+
order=args.get("test_order", 0),
|
77 |
radius=5,
|
78 |
sketch_threshold_range=(20, 20),
|
79 |
tokenizer=tokenizer,
|
80 |
category=category,
|
81 |
size=(512, 384),
|
82 |
)
|
83 |
+
elif args["dataset"] == "vitonhd":
|
84 |
test_dataset = VitonHDDataset(
|
85 |
+
dataroot_path=args["dataset_path"],
|
86 |
phase="test",
|
87 |
+
order=args.get("test_order", 0),
|
88 |
sketch_threshold_range=(20, 20),
|
89 |
radius=5,
|
90 |
tokenizer=tokenizer,
|
91 |
size=(512, 384),
|
92 |
)
|
93 |
else:
|
94 |
+
raise NotImplementedError(f"Dataset {args['dataset']} is not supported.")
|
95 |
|
96 |
+
# Prepare dataloader
|
97 |
test_dataloader = torch.utils.data.DataLoader(
|
98 |
test_dataset,
|
99 |
shuffle=False,
|
100 |
+
batch_size=args.get("batch_size", 1),
|
101 |
+
num_workers=args.get("num_workers_test", 4),
|
102 |
)
|
103 |
|
104 |
+
# Cast models to appropriate precision
|
105 |
+
weight_dtype = torch.float32 if args.get("mixed_precision") != "fp16" else torch.float16
|
106 |
text_encoder.to(device, dtype=weight_dtype)
|
107 |
vae.to(device, dtype=weight_dtype)
|
|
|
|
|
108 |
unet.eval()
|
109 |
|
110 |
+
# Select pipeline
|
111 |
with torch.inference_mode():
|
112 |
+
pipeline_class = MGDPipeDisentangled if args.get("disentagle", False) else MGDPipe
|
113 |
+
val_pipe = pipeline_class(
|
114 |
+
text_encoder=text_encoder,
|
115 |
+
vae=vae,
|
116 |
+
unet=unet.to(vae.dtype),
|
117 |
+
tokenizer=tokenizer,
|
118 |
+
scheduler=val_scheduler,
|
119 |
+
).to(device)
|
120 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
val_pipe.enable_attention_slicing()
|
122 |
|
123 |
# Prepare dataloader with accelerator
|
124 |
test_dataloader = accelerator.prepare(test_dataloader)
|
125 |
|
126 |
+
# Generate images
|
127 |
+
output_path = os.path.join(args["output_dir"], args.get("save_name", "generated_image.png"))
|
128 |
generate_images_from_mgd_pipe(
|
129 |
+
test_order=args.get("test_order", 0),
|
130 |
pipe=val_pipe,
|
131 |
test_dataloader=test_dataloader,
|
132 |
+
save_name=args.get("save_name", "generated_image"),
|
133 |
+
dataset=args["dataset"],
|
134 |
+
output_dir=args["output_dir"],
|
135 |
+
guidance_scale=args.get("guidance_scale", 7.5),
|
136 |
+
guidance_scale_pose=args.get("guidance_scale_pose", 0.5),
|
137 |
+
guidance_scale_sketch=args.get("guidance_scale_sketch", 7.5),
|
138 |
+
sketch_cond_rate=args.get("sketch_cond_rate", 1.0),
|
139 |
+
start_cond_rate=args.get("start_cond_rate", 0.0),
|
140 |
no_pose=False,
|
141 |
+
disentagle=args.get("disentagle", False),
|
142 |
+
seed=args.get("seed", None),
|
143 |
)
|
144 |
|
145 |
+
# Return the output image path for verification
|
146 |
+
return output_path
|
147 |
+
|
148 |
|
149 |
if __name__ == "__main__":
|
150 |
+
# Example usage for debugging
|
151 |
+
example_args = {
|
152 |
+
"pretrained_model_name_or_path": "./models",
|
153 |
+
"dataset": "dresscode",
|
154 |
+
"dataset_path": "./datasets/dresscode",
|
155 |
+
"output_dir": "./outputs",
|
156 |
+
"guidance_scale": 7.5,
|
157 |
+
"guidance_scale_sketch": 7.5,
|
158 |
+
"mixed_precision": "fp16",
|
159 |
+
"batch_size": 1,
|
160 |
+
"seed": 42,
|
161 |
+
}
|
162 |
+
output_image = main(example_args)
|
163 |
+
print(f"Image generated at: {output_image}")
|