import os from tqdm import tqdm import torch import torchvision.transforms as T from diffusers import DiffusionPipeline from torch.utils.data import DataLoader import sys import os # Add the project root directory to sys.path project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '../../..')) if project_root not in sys.path: sys.path.append(project_root) from src.utils.image_composition import compose_img, compose_img_dresscode @torch.inference_mode() def generate_images_from_mgd_pipe( test_order: bool, pipe: DiffusionPipeline, test_dataloader: DataLoader, save_name: str, dataset: str, output_dir: str, guidance_scale: float = 7.5, guidance_scale_pose: float = 7.5, guidance_scale_sketch: float = 7.5, sketch_cond_rate: float = 1.0, start_cond_rate: float = 0.0, no_pose: bool = False, disentagle: bool = False, seed: int = 1234, ) -> None: """ Generates images from the given test dataloader and saves them to the output directory. """ assert save_name != "", "save_name must be specified" assert output_dir != "", "output_dir must be specified" path = os.path.join(output_dir, f"{save_name}_{test_order}", "images") os.makedirs(path, exist_ok=True) generator = torch.Generator("cuda").manual_seed(seed) for batch in tqdm(test_dataloader): # Debugging: Print batch information print(f"Processing batch {test_order}") print(f"Saving images to: {path}") print(f"Batch keys: {batch.keys()}") # Check available keys in batch model_img = batch["image"] mask_img = batch["inpaint_mask"].type(torch.float32) prompts = batch["original_captions"] # List of prompts pose_map = batch["pose_map"] sketch = batch["im_sketch"] ext = ".jpg" # Debugging: Validate `pipe` print(f"Type of `pipe`: {type(pipe)}") print(f"Is `pipe` callable? {callable(pipe)}") assert callable(pipe), "`pipe` must be callable. Check MGDPipe implementation." if disentagle: generated_images = pipe( prompt=prompts, image=model_img, mask_image=mask_img, pose_map=pose_map, sketch=sketch, height=512, width=384, guidance_scale=guidance_scale, num_images_per_prompt=1, generator=generator, sketch_cond_rate=sketch_cond_rate, guidance_scale_pose=guidance_scale_pose, guidance_scale_sketch=guidance_scale_sketch, start_cond_rate=start_cond_rate, no_pose=no_pose, ).images else: generated_images = pipe( prompt=prompts, image=model_img, mask_image=mask_img, pose_map=pose_map, sketch=sketch, height=512, width=384, guidance_scale=guidance_scale, num_images_per_prompt=1, generator=generator, sketch_cond_rate=sketch_cond_rate, start_cond_rate=start_cond_rate, no_pose=no_pose, ).images for i, generated_image in enumerate(generated_images): model_i = model_img[i] * 0.5 + 0.5 if dataset == "vitonhd": final_img = compose_img(model_i, generated_image, batch["im_parse"][i]) else: # dataset == Dresscode face = batch["stitch_label"][i].to(model_img.device) face = T.functional.resize( face, size=(512, 384), interpolation=T.InterpolationMode.BILINEAR, antialias=True, ) final_img = compose_img_dresscode( gt_img=model_i, fake_img=T.functional.to_tensor(generated_image).to(model_img.device), im_head=face, ) # Save the final image final_img = T.functional.to_pil_image(final_img) save_path = os.path.join(path, batch["im_name"][i].replace(".jpg", ext)) final_img.save(save_path) print(f"Saved image to {save_path}")