File size: 3,322 Bytes
8cc8f31
 
 
 
 
 
 
 
 
 
d54265f
 
8cc8f31
 
d54265f
 
 
 
 
 
 
8cc8f31
 
d54265f
 
8cc8f31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9fce28
8cc8f31
d4b7ad4
 
 
 
 
 
8cc8f31
 
 
 
 
d54265f
8cc8f31
 
 
 
c9fce28
8cc8f31
 
 
 
c9fce28
8cc8f31
c9fce28
 
 
 
8cc8f31
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
from fsspec.parquet import open_parquet_file 
import fsspec
import pyarrow.parquet as pq
from .grid import *
import pandas as pd
from io import BytesIO
import os
from PIL import Image

# GLOBAL VARIABLES
if os.path.isfile('helpers/s2l2a_metadata.parquet'):
    l2a_meta_path = 'helpers/s2l2a_metadata.parquet'
else:
    DATASET_NAME = 'Major-TOM/Core-S2L2A'
    l2a_meta_path = 'https://huggingface.co/datasets/{}/resolve/main/metadata.parquet'.format(DATASET_NAME)

if os.path.isfile('helpers/s2l1c_metadata.parquet'):
    l1c_meta_path = 'helpers/s2l1c_metadata.parquet'
else:
    DATASET_NAME = 'Major-TOM/Core-S2L1C'
    l1c_meta_path = 'https://huggingface.co/datasets/{}/resolve/main/metadata.parquet'.format(DATASET_NAME)

grid = Grid(10, latitude_range=(-90,90), longitude_range=(-180,180))
l2a_df = pd.read_parquet(l2a_meta_path)
l1c_df = pd.read_parquet(l1c_meta_path)

# HELPER FUNCTIONS
def gridcell2ints(grid_string):
    up = int(grid_string.split('_')[0][:-1]) * (2*int(grid_string.split('_')[0][-1]=='U') - 1) # +ve if up
    right = int(grid_string.split('_')[1][:-1]) * (2*int(grid_string.split('_')[1][-1]=='R') - 1) # +ve if R

    return up, right

def row2image(parquet_url, parquet_row, fullrow_read=True):

    if fullrow_read:
        # option 1
        f=fsspec.open(parquet_url)
        temp_path = f.open()
    else:
        # option 2
        temp_path = open_parquet_file(parquet_url,columns = ["thumbnail"])
    
    with pq.ParquetFile(temp_path) as pf:
        first_row_group = pf.read_row_group(parquet_row, columns=['thumbnail'])

    stream = BytesIO(first_row_group['thumbnail'][0].as_py())
    return Image.open(stream)

def row2s2(parquet_url, parquet_row, s2_bands = ["B04", "B03", "B02"]):
    with open_parquet_file(parquet_url,columns = s2_bands) as f:
        with pq.ParquetFile(f) as pf:
            first_row_group = pf.read_row_group(parquet_row, columns=s2_bands)

    return first_row_group

def cell2row(grid_string, meta_df, return_row = False):
    row_U, col_R = gridcell2ints(grid_string)
    R = meta_df.query('grid_row_u == {} & grid_col_r == {}'.format(row_U, col_R))

    if not R.empty:
        if return_row:
            return R.parquet_url.item(), R.parquet_row.item(), R
        else:
            return R.parquet_url.item(), R.parquet_row.item()
    else:
        return None

def map_to_image(map, return_centre=False, return_gridcell=False, l2a=True):

    try:
        # 1. get bounds
        bbox = map.get_bbox()
        center = [(bbox[3]+bbox[1])/2, (bbox[2]+bbox[0])/2]
    except:
        return None

    # 2. translate coordinate to major-tom tile
    rows, cols = grid.latlon2rowcol([center[0]], [center[1]])

    # 3. translate major-tom cell to row in parquet
    df = l2a_df if l2a else l1c_df
    row = cell2row("{}_{}".format(rows[0],cols[0]), df, return_row = True)

    if row is not None:
        parquet_url, parquet_row, meta_row = row
        print(meta_row)
        img = row2image(parquet_url, parquet_row)
        # 4. acquire image # X. update map
        lat, lon = meta_row.centre_lat.item(), meta_row.centre_lon.item()

        ret = [img]
        if return_centre:
            ret.append((lat,lon))
        if return_gridcell:
            ret.append(meta_row.grid_cell.item())
        return ret
    else:
        return None