Spaces:
Runtime error
Runtime error
File size: 12,407 Bytes
9ae2d76 0c3bec0 9ae2d76 bd0ad83 9ae2d76 0c3bec0 9ae2d76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
from __future__ import annotations
import gc
import pathlib
import sys
import tempfile
import os
import gradio as gr
import imageio
import PIL.Image
import torch
from diffusers.utils.import_utils import is_xformers_available
from einops import rearrange
from huggingface_hub import ModelCard
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection, CLIPTextModelWithProjection
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler, PNDMScheduler, ControlNetModel, PriorTransformer, UnCLIPScheduler
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from omegaconf import OmegaConf
from typing import Any, Callable, Dict, List, Optional, Union, Tuple
sys.path.append('Make-A-Protagonist')
from makeaprotagonist.models.unet import UNet3DConditionModel
from makeaprotagonist.pipelines.pipeline_stable_unclip_controlavideo import MakeAProtagonistStableUnCLIPPipeline, MultiControlNetModel
from makeaprotagonist.dataset.dataset import MakeAProtagonistDataset
from makeaprotagonist.util import save_videos_grid, ddim_inversion_unclip, ddim_inversion_prior
from experts.grounded_sam_mask_out import mask_out_reference_image
import ipdb
class InferencePipeline:
def __init__(self, hf_token: str | None = None):
self.hf_token = hf_token
self.pipe = None
self.device = torch.device(
'cuda:0' if torch.cuda.is_available() else 'cpu')
self.model_id = None
self.conditions = None
self.masks = None
self.ddim_inv_latent = None
self.train_dataset, self.sample_indices = None, None
def clear(self) -> None:
self.model_id = None
del self.pipe
self.pipe = None
self.conditions = None
self.masks = None
self.ddim_inv_latent = None
self.train_dataset, self.sample_indices = None, None
torch.cuda.empty_cache()
gc.collect()
@staticmethod
def check_if_model_is_local(model_id: str) -> bool:
return pathlib.Path(model_id).exists()
@staticmethod
def get_model_card(model_id: str,
hf_token: str | None = None) -> ModelCard:
if InferencePipeline.check_if_model_is_local(model_id):
card_path = (pathlib.Path(model_id) / 'README.md').as_posix()
else:
card_path = model_id
return ModelCard.load(card_path, token=hf_token)
@staticmethod
def get_base_model_info(model_id: str, hf_token: str | None = None) -> str:
card = InferencePipeline.get_model_card(model_id, hf_token)
return card.data.base_model
@torch.no_grad()
def load_pipe(self, model_id: str, n_steps, seed) -> None:
if model_id == self.model_id:
return self.conditions, self.masks, self.ddim_inv_latent, self.train_dataset, self.sample_indices
base_model_id = self.get_base_model_info(model_id, self.hf_token)
pretrained_model_path = 'stabilityai/stable-diffusion-2-1-unclip-small'
# image encoding components
feature_extractor = CLIPImageProcessor.from_pretrained(pretrained_model_path, subfolder="feature_extractor")
image_encoder = CLIPVisionModelWithProjection.from_pretrained(pretrained_model_path, subfolder="image_encoder")
# image noising components
image_normalizer = StableUnCLIPImageNormalizer.from_pretrained(pretrained_model_path, subfolder="image_normalizer", torch_dtype=torch.float16,)
image_noising_scheduler = DDPMScheduler.from_pretrained(pretrained_model_path, subfolder="image_noising_scheduler")
# regular denoising components
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder", torch_dtype=torch.float16,)
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae", torch_dtype=torch.float16,)
self.ddim_inv_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder='scheduler')
self.ddim_inv_scheduler.set_timesteps(n_steps)
prior_model_id = "kakaobrain/karlo-v1-alpha"
data_type = torch.float16
prior = PriorTransformer.from_pretrained(prior_model_id, subfolder="prior", torch_dtype=data_type)
prior_text_model_id = "openai/clip-vit-large-patch14"
prior_tokenizer = CLIPTokenizer.from_pretrained(prior_text_model_id)
prior_text_model = CLIPTextModelWithProjection.from_pretrained(prior_text_model_id, torch_dtype=data_type)
prior_scheduler = UnCLIPScheduler.from_pretrained(prior_model_id, subfolder="prior_scheduler")
prior_scheduler = DDPMScheduler.from_config(prior_scheduler.config)
controlnet_model_id = ['controlnet-2-1-unclip-small-openposefull', 'controlnet-2-1-unclip-small-depth']
controlnet = MultiControlNetModel( [ControlNetModel.from_pretrained('Make-A-Protagonist/controlnet-2-1-unclip-small', subfolder=subfolder_id, torch_dtype=torch.float16) for subfolder_id in controlnet_model_id] )
unet = UNet3DConditionModel.from_pretrained(
model_id,
subfolder='unet',
torch_dtype=torch.float16,
use_auth_token=self.hf_token)
# Freeze vae and text_encoder and adapter
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
## freeze image embed
image_encoder.requires_grad_(False)
unet.requires_grad_(False)
## freeze controlnet
controlnet.requires_grad_(False)
## freeze prior
prior.requires_grad_(False)
prior_text_model.requires_grad_(False)
config_file = os.path.join('Make-A-Protagonist/configs', model_id.split('/')[-1] + '.yaml')
self.cfg = OmegaConf.load(config_file)
# def source_parsing(self, n_steps):
# ipdb.set_trace()
train_dataset = MakeAProtagonistDataset(**self.cfg)
train_dataset.preprocess_img_embedding(feature_extractor, image_encoder)
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=1, num_workers=0,
)
image_encoder.to(dtype=data_type)
pipe = MakeAProtagonistStableUnCLIPPipeline(
prior_tokenizer=prior_tokenizer,
prior_text_encoder=prior_text_model,
prior=prior,
prior_scheduler=prior_scheduler,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
image_normalizer=image_normalizer,
image_noising_scheduler=image_noising_scheduler,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
controlnet=controlnet,
scheduler=DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
)
pipe = pipe.to(self.device)
if is_xformers_available():
pipe.unet.enable_xformers_memory_efficient_attention()
pipe.controlnet.enable_xformers_memory_efficient_attention()
self.pipe = pipe
self.model_id = model_id # type: ignore
self.vae = vae
# self.feature_extractor = feature_extractor
# self.image_encoder = image_encoder
## ddim inverse for source video
batch = next(iter(train_dataloader))
weight_dtype = torch.float16
pixel_values = batch["pixel_values"].to(weight_dtype).to(self.device)
video_length = pixel_values.shape[1]
pixel_values = rearrange(pixel_values, "b f c h w -> (b f) c h w")
latents = self.vae.encode(pixel_values).latent_dist.sample()
latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length)
latents = latents * self.vae.config.scaling_factor
# ControlNet
# ipdb.set_trace()
conditions = [_condition.to(weight_dtype).to(self.device) for _, _condition in batch["conditions"].items()] # b f c h w
masks = batch["masks"].to(weight_dtype).to(self.device) # b,f,1,h,w
emb_dim = train_dataset.img_embeddings[0].size(0)
key_frame_embed = torch.zeros((1, emb_dim)).to(device=latents.device, dtype=latents.dtype) ## this is dim 0
# ipdb.set_trace()
ddim_inv_latent = ddim_inversion_unclip(
self.pipe, self.ddim_inv_scheduler, video_latent=latents,
num_inv_steps=n_steps, prompt="", image_embed=key_frame_embed, noise_level=0, seed=seed)[-1].to(weight_dtype)
self.conditions = conditions
self.masks = masks
self.ddim_inv_latent = ddim_inv_latent
self.train_dataset = train_dataset
self.sample_indices = batch["sample_indices"][0]
return conditions, masks, ddim_inv_latent, train_dataset, batch["sample_indices"][0]
def run(
self,
model_id: str,
prompt: str,
video_length: int,
fps: int,
seed: int,
n_steps: int,
guidance_scale: float,
ref_image: PIL.Image.Image,
ref_pro_prompt: str,
noise_level: int,
start_step: int,
control_pose: float,
control_depth: float,
source_pro: int = 0, # 0 or 1
source_bg: int = 0,
) -> PIL.Image.Image:
if not torch.cuda.is_available():
raise gr.Error('CUDA is not available.')
torch.cuda.empty_cache()
conditions, masks, ddim_inv_latent, _, _ = self.load_pipe(model_id, n_steps, seed)
## conditions [1,F,3,H,W]
## masks [1,F,1,H,W]
## ddim_inv_latent [1,4,F,H,W]
## NOTE this is to deal with video length
conditions = [_condition[:,:video_length] for _condition in conditions]
masks = masks[:, :video_length]
ddim_inv_latent = ddim_inv_latent[:,:,:video_length]
generator = torch.Generator(device=self.device).manual_seed(seed)
## TODO mask out reference image
# ipdb.set_trace()
ref_image = mask_out_reference_image(ref_image, ref_pro_prompt)
controlnet_conditioning_scale = [control_pose, control_depth]
prior_denoised_embeds = None
image_embed = None
if source_bg:
## using source background and changing the protagonist
prior_denoised_embeds = self.train_dataset.img_embeddings[0][None].to(device=ddim_inv_latent.device, dtype=ddim_inv_latent.dtype) # 1, 768 for UnCLIP-small
if source_pro:
# using source protagonist and changing the background
sample_indices = self.sample_indices
image_embed = [self.train_dataset.img_embeddings[idx] for idx in sample_indices]
image_embed = torch.stack(image_embed, dim=0).to(device=ddim_inv_latent.device, dtype=ddim_inv_latent.dtype) # F, 768 for UnCLIP-small # F,C
image_embed = image_embed[:video_length]
ref_image = None
# ipdb.set_trace()
out = self.pipe(
image=ref_image,
prompt=prompt,
control_image=conditions,
video_length=video_length,
width=768,
height=768,
num_inference_steps=n_steps,
guidance_scale=guidance_scale,
generator=generator,
## ddim inversion
latents=ddim_inv_latent,
## ref image embeds
noise_level=noise_level,
## controlnet
controlnet_conditioning_scale=controlnet_conditioning_scale,
## mask
masks=masks,
mask_mode='all',
mask_latent_fuse_mode = 'all',
start_step=start_step,
## edit bg and pro
prior_latents=None,
image_embeds=image_embed, # keep pro
prior_denoised_embeds=prior_denoised_embeds # keep bg
)
frames = rearrange(out.videos[0], 'c t h w -> t h w c')
frames = (frames * 255).to(torch.uint8).numpy()
out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
writer = imageio.get_writer(out_file.name, fps=fps)
for frame in frames:
writer.append_data(frame)
writer.close()
return out_file.name
|