File size: 12,407 Bytes
9ae2d76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c3bec0
9ae2d76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd0ad83
9ae2d76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c3bec0
9ae2d76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
from __future__ import annotations

import gc
import pathlib
import sys
import tempfile
import os
import gradio as gr
import imageio
import PIL.Image
import torch
from diffusers.utils.import_utils import is_xformers_available
from einops import rearrange
from huggingface_hub import ModelCard
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection, CLIPTextModelWithProjection
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler, PNDMScheduler, ControlNetModel, PriorTransformer, UnCLIPScheduler
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from omegaconf import OmegaConf
from typing import Any, Callable, Dict, List, Optional, Union, Tuple

sys.path.append('Make-A-Protagonist')

from makeaprotagonist.models.unet import UNet3DConditionModel
from makeaprotagonist.pipelines.pipeline_stable_unclip_controlavideo import MakeAProtagonistStableUnCLIPPipeline, MultiControlNetModel
from makeaprotagonist.dataset.dataset import MakeAProtagonistDataset
from makeaprotagonist.util import save_videos_grid, ddim_inversion_unclip, ddim_inversion_prior
from experts.grounded_sam_mask_out import mask_out_reference_image


import ipdb

class InferencePipeline:
    def __init__(self, hf_token: str | None = None):
        self.hf_token = hf_token
        self.pipe = None
        self.device = torch.device(
            'cuda:0' if torch.cuda.is_available() else 'cpu')
        self.model_id = None

        self.conditions = None
        self.masks = None
        self.ddim_inv_latent = None
        self.train_dataset, self.sample_indices = None, None

    def clear(self) -> None:
        self.model_id = None
        del self.pipe
        self.pipe = None
        self.conditions = None
        self.masks = None
        self.ddim_inv_latent = None
        self.train_dataset, self.sample_indices = None, None

        torch.cuda.empty_cache()
        gc.collect()

    @staticmethod
    def check_if_model_is_local(model_id: str) -> bool:
        return pathlib.Path(model_id).exists()

    @staticmethod
    def get_model_card(model_id: str,
                       hf_token: str | None = None) -> ModelCard:
        if InferencePipeline.check_if_model_is_local(model_id):
            card_path = (pathlib.Path(model_id) / 'README.md').as_posix()
        else:
            card_path = model_id
        return ModelCard.load(card_path, token=hf_token)

    @staticmethod
    def get_base_model_info(model_id: str, hf_token: str | None = None) -> str:
        card = InferencePipeline.get_model_card(model_id, hf_token)
        return card.data.base_model

    @torch.no_grad()
    def load_pipe(self, model_id: str, n_steps, seed) -> None:
        if model_id == self.model_id:
            return self.conditions, self.masks, self.ddim_inv_latent, self.train_dataset, self.sample_indices

        base_model_id = self.get_base_model_info(model_id, self.hf_token)
        
        pretrained_model_path = 'stabilityai/stable-diffusion-2-1-unclip-small'
        # image encoding components
        feature_extractor = CLIPImageProcessor.from_pretrained(pretrained_model_path, subfolder="feature_extractor")
        image_encoder = CLIPVisionModelWithProjection.from_pretrained(pretrained_model_path, subfolder="image_encoder")
        # image noising components
        image_normalizer = StableUnCLIPImageNormalizer.from_pretrained(pretrained_model_path, subfolder="image_normalizer", torch_dtype=torch.float16,)
        image_noising_scheduler = DDPMScheduler.from_pretrained(pretrained_model_path, subfolder="image_noising_scheduler")
        # regular denoising components
        tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
        text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder", torch_dtype=torch.float16,)
        vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae", torch_dtype=torch.float16,)
        self.ddim_inv_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder='scheduler')
        self.ddim_inv_scheduler.set_timesteps(n_steps)

        prior_model_id = "kakaobrain/karlo-v1-alpha"
        data_type = torch.float16
        prior = PriorTransformer.from_pretrained(prior_model_id, subfolder="prior", torch_dtype=data_type)

        prior_text_model_id = "openai/clip-vit-large-patch14"
        prior_tokenizer = CLIPTokenizer.from_pretrained(prior_text_model_id)
        prior_text_model = CLIPTextModelWithProjection.from_pretrained(prior_text_model_id, torch_dtype=data_type)
        prior_scheduler = UnCLIPScheduler.from_pretrained(prior_model_id, subfolder="prior_scheduler")
        prior_scheduler = DDPMScheduler.from_config(prior_scheduler.config)

        controlnet_model_id = ['controlnet-2-1-unclip-small-openposefull', 'controlnet-2-1-unclip-small-depth']
        controlnet = MultiControlNetModel( [ControlNetModel.from_pretrained('Make-A-Protagonist/controlnet-2-1-unclip-small', subfolder=subfolder_id, torch_dtype=torch.float16) for subfolder_id in controlnet_model_id] )

        unet = UNet3DConditionModel.from_pretrained(
            model_id,
            subfolder='unet',
            torch_dtype=torch.float16,
            use_auth_token=self.hf_token)

        # Freeze vae and text_encoder and adapter
        vae.requires_grad_(False)
        text_encoder.requires_grad_(False)

        ## freeze image embed
        image_encoder.requires_grad_(False)

        unet.requires_grad_(False)
        ## freeze controlnet
        controlnet.requires_grad_(False)

        ## freeze prior
        prior.requires_grad_(False)
        prior_text_model.requires_grad_(False)

        config_file = os.path.join('Make-A-Protagonist/configs', model_id.split('/')[-1] + '.yaml')
        self.cfg = OmegaConf.load(config_file)

        # def source_parsing(self, n_steps):
        # ipdb.set_trace()
        train_dataset = MakeAProtagonistDataset(**self.cfg)
        train_dataset.preprocess_img_embedding(feature_extractor, image_encoder)
        train_dataloader = torch.utils.data.DataLoader(
        train_dataset, batch_size=1, num_workers=0, 
        )
        image_encoder.to(dtype=data_type)
        pipe = MakeAProtagonistStableUnCLIPPipeline(
                prior_tokenizer=prior_tokenizer,
                prior_text_encoder=prior_text_model,
                prior=prior,
                prior_scheduler=prior_scheduler,
                feature_extractor=feature_extractor,
                image_encoder=image_encoder,
                image_normalizer=image_normalizer,
                image_noising_scheduler=image_noising_scheduler,
                vae=vae, 
                text_encoder=text_encoder, 
                tokenizer=tokenizer, 
                unet=unet,
                controlnet=controlnet,
                scheduler=DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
            )

        pipe = pipe.to(self.device)
        
        if is_xformers_available():
            pipe.unet.enable_xformers_memory_efficient_attention()
            pipe.controlnet.enable_xformers_memory_efficient_attention()
        self.pipe = pipe
        self.model_id = model_id  # type: ignore
        self.vae = vae
        # self.feature_extractor = feature_extractor
        # self.image_encoder = image_encoder
        ## ddim inverse for source video

        batch = next(iter(train_dataloader))
        weight_dtype = torch.float16
        pixel_values = batch["pixel_values"].to(weight_dtype).to(self.device)
        video_length = pixel_values.shape[1]
        pixel_values = rearrange(pixel_values, "b f c h w -> (b f) c h w")
        latents = self.vae.encode(pixel_values).latent_dist.sample()
        latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length)
        latents = latents * self.vae.config.scaling_factor
        # ControlNet
        # ipdb.set_trace()
        conditions = [_condition.to(weight_dtype).to(self.device) for _, _condition in batch["conditions"].items()] # b f c h w
        masks = batch["masks"].to(weight_dtype).to(self.device) # b,f,1,h,w
        emb_dim = train_dataset.img_embeddings[0].size(0)
        key_frame_embed = torch.zeros((1, emb_dim)).to(device=latents.device, dtype=latents.dtype) ## this is dim 0
        # ipdb.set_trace()
        ddim_inv_latent = ddim_inversion_unclip(
            self.pipe, self.ddim_inv_scheduler, video_latent=latents,
            num_inv_steps=n_steps, prompt="", image_embed=key_frame_embed, noise_level=0, seed=seed)[-1].to(weight_dtype)
        self.conditions = conditions
        self.masks = masks
        self.ddim_inv_latent = ddim_inv_latent
        self.train_dataset = train_dataset
        self.sample_indices = batch["sample_indices"][0]
        return conditions, masks, ddim_inv_latent, train_dataset, batch["sample_indices"][0]
                
    def run(
        self,
        model_id: str,
        prompt: str,
        video_length: int,
        fps: int,
        seed: int,
        n_steps: int,
        guidance_scale: float,
        ref_image: PIL.Image.Image,
        ref_pro_prompt: str,
        noise_level: int,
        start_step: int, 
        control_pose: float,
        control_depth: float,
        source_pro: int = 0, # 0 or 1
        source_bg: int = 0,
    ) -> PIL.Image.Image:

        if not torch.cuda.is_available():
            raise gr.Error('CUDA is not available.')

        torch.cuda.empty_cache()
        
        conditions, masks, ddim_inv_latent, _, _ = self.load_pipe(model_id, n_steps, seed)
        ## conditions [1,F,3,H,W]
        ## masks [1,F,1,H,W]
        ## ddim_inv_latent [1,4,F,H,W]
        ## NOTE this is to deal with video length
        conditions = [_condition[:,:video_length] for _condition in conditions]
        masks = masks[:, :video_length]
        ddim_inv_latent = ddim_inv_latent[:,:,:video_length]

        generator = torch.Generator(device=self.device).manual_seed(seed)

        ## TODO mask out reference image
        # ipdb.set_trace()
        ref_image = mask_out_reference_image(ref_image, ref_pro_prompt)
        controlnet_conditioning_scale = [control_pose, control_depth]

        prior_denoised_embeds = None
        image_embed = None
        if source_bg:
            ## using source background and changing the protagonist
            prior_denoised_embeds = self.train_dataset.img_embeddings[0][None].to(device=ddim_inv_latent.device, dtype=ddim_inv_latent.dtype) # 1, 768 for UnCLIP-small
        
        if source_pro:
            # using source protagonist and changing the background
            sample_indices = self.sample_indices
            image_embed = [self.train_dataset.img_embeddings[idx] for idx in sample_indices]
            image_embed = torch.stack(image_embed, dim=0).to(device=ddim_inv_latent.device, dtype=ddim_inv_latent.dtype) # F, 768 for UnCLIP-small # F,C
            image_embed = image_embed[:video_length]
            ref_image = None

        # ipdb.set_trace()
        out = self.pipe(
            image=ref_image, 
            prompt=prompt, 
            control_image=conditions, 
            video_length=video_length,
            width=768,
            height=768,
            num_inference_steps=n_steps,
            guidance_scale=guidance_scale,
            generator=generator,
            ## ddim inversion
            latents=ddim_inv_latent, 
            ## ref image embeds 
            noise_level=noise_level, 
            ## controlnet
            controlnet_conditioning_scale=controlnet_conditioning_scale,
            ## mask
            masks=masks, 
            mask_mode='all',
            mask_latent_fuse_mode = 'all',
            start_step=start_step,
            ## edit bg and pro
            prior_latents=None, 
            image_embeds=image_embed, # keep pro
            prior_denoised_embeds=prior_denoised_embeds # keep bg
            )

        frames = rearrange(out.videos[0], 'c t h w -> t h w c')
        frames = (frames * 255).to(torch.uint8).numpy()

        out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
        writer = imageio.get_writer(out_file.name, fps=fps)
        for frame in frames:
            writer.append_data(frame)
        writer.close()

        return out_file.name