Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
import gc | |
import pathlib | |
import sys | |
import tempfile | |
import os | |
import gradio as gr | |
import imageio | |
import PIL.Image | |
import torch | |
from diffusers.utils.import_utils import is_xformers_available | |
from einops import rearrange | |
from huggingface_hub import ModelCard | |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection, CLIPTextModelWithProjection | |
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler, PNDMScheduler, ControlNetModel, PriorTransformer, UnCLIPScheduler | |
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer | |
from omegaconf import OmegaConf | |
from typing import Any, Callable, Dict, List, Optional, Union, Tuple | |
sys.path.append('Make-A-Protagonist') | |
from makeaprotagonist.models.unet import UNet3DConditionModel | |
from makeaprotagonist.pipelines.pipeline_stable_unclip_controlavideo import MakeAProtagonistStableUnCLIPPipeline, MultiControlNetModel | |
from makeaprotagonist.dataset.dataset import MakeAProtagonistDataset | |
from makeaprotagonist.util import save_videos_grid, ddim_inversion_unclip, ddim_inversion_prior | |
from experts.grounded_sam_mask_out import mask_out_reference_image | |
import ipdb | |
class InferencePipeline: | |
def __init__(self, hf_token: str | None = None): | |
self.hf_token = hf_token | |
self.pipe = None | |
self.device = torch.device( | |
'cuda:0' if torch.cuda.is_available() else 'cpu') | |
self.model_id = None | |
self.conditions = None | |
self.masks = None | |
self.ddim_inv_latent = None | |
self.train_dataset, self.sample_indices = None, None | |
def clear(self) -> None: | |
self.model_id = None | |
del self.pipe | |
self.pipe = None | |
self.conditions = None | |
self.masks = None | |
self.ddim_inv_latent = None | |
self.train_dataset, self.sample_indices = None, None | |
torch.cuda.empty_cache() | |
gc.collect() | |
def check_if_model_is_local(model_id: str) -> bool: | |
return pathlib.Path(model_id).exists() | |
def get_model_card(model_id: str, | |
hf_token: str | None = None) -> ModelCard: | |
if InferencePipeline.check_if_model_is_local(model_id): | |
card_path = (pathlib.Path(model_id) / 'README.md').as_posix() | |
else: | |
card_path = model_id | |
return ModelCard.load(card_path, token=hf_token) | |
def get_base_model_info(model_id: str, hf_token: str | None = None) -> str: | |
card = InferencePipeline.get_model_card(model_id, hf_token) | |
return card.data.base_model | |
def load_pipe(self, model_id: str, n_steps, seed) -> None: | |
if model_id == self.model_id: | |
return self.conditions, self.masks, self.ddim_inv_latent, self.train_dataset, self.sample_indices | |
base_model_id = self.get_base_model_info(model_id, self.hf_token) | |
pretrained_model_path = 'stabilityai/stable-diffusion-2-1-unclip-small' | |
# image encoding components | |
feature_extractor = CLIPImageProcessor.from_pretrained(pretrained_model_path, subfolder="feature_extractor") | |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(pretrained_model_path, subfolder="image_encoder") | |
# image noising components | |
image_normalizer = StableUnCLIPImageNormalizer.from_pretrained(pretrained_model_path, subfolder="image_normalizer", torch_dtype=torch.float16,) | |
image_noising_scheduler = DDPMScheduler.from_pretrained(pretrained_model_path, subfolder="image_noising_scheduler") | |
# regular denoising components | |
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer") | |
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder", torch_dtype=torch.float16,) | |
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae", torch_dtype=torch.float16,) | |
self.ddim_inv_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder='scheduler') | |
self.ddim_inv_scheduler.set_timesteps(n_steps) | |
prior_model_id = "kakaobrain/karlo-v1-alpha" | |
data_type = torch.float16 | |
prior = PriorTransformer.from_pretrained(prior_model_id, subfolder="prior", torch_dtype=data_type) | |
prior_text_model_id = "openai/clip-vit-large-patch14" | |
prior_tokenizer = CLIPTokenizer.from_pretrained(prior_text_model_id) | |
prior_text_model = CLIPTextModelWithProjection.from_pretrained(prior_text_model_id, torch_dtype=data_type) | |
prior_scheduler = UnCLIPScheduler.from_pretrained(prior_model_id, subfolder="prior_scheduler") | |
prior_scheduler = DDPMScheduler.from_config(prior_scheduler.config) | |
controlnet_model_id = ['controlnet-2-1-unclip-small-openposefull', 'controlnet-2-1-unclip-small-depth'] | |
controlnet = MultiControlNetModel( [ControlNetModel.from_pretrained('Make-A-Protagonist/controlnet-2-1-unclip-small', subfolder=subfolder_id, torch_dtype=torch.float16) for subfolder_id in controlnet_model_id] ) | |
unet = UNet3DConditionModel.from_pretrained( | |
model_id, | |
subfolder='unet', | |
torch_dtype=torch.float16, | |
use_auth_token=self.hf_token) | |
# Freeze vae and text_encoder and adapter | |
vae.requires_grad_(False) | |
text_encoder.requires_grad_(False) | |
## freeze image embed | |
image_encoder.requires_grad_(False) | |
unet.requires_grad_(False) | |
## freeze controlnet | |
controlnet.requires_grad_(False) | |
## freeze prior | |
prior.requires_grad_(False) | |
prior_text_model.requires_grad_(False) | |
config_file = os.path.join('Make-A-Protagonist/configs', model_id.split('/')[-1] + '.yaml') | |
self.cfg = OmegaConf.load(config_file) | |
# def source_parsing(self, n_steps): | |
# ipdb.set_trace() | |
train_dataset = MakeAProtagonistDataset(**self.cfg) | |
train_dataset.preprocess_img_embedding(feature_extractor, image_encoder) | |
train_dataloader = torch.utils.data.DataLoader( | |
train_dataset, batch_size=1, num_workers=0, | |
) | |
image_encoder.to(dtype=data_type) | |
pipe = MakeAProtagonistStableUnCLIPPipeline( | |
prior_tokenizer=prior_tokenizer, | |
prior_text_encoder=prior_text_model, | |
prior=prior, | |
prior_scheduler=prior_scheduler, | |
feature_extractor=feature_extractor, | |
image_encoder=image_encoder, | |
image_normalizer=image_normalizer, | |
image_noising_scheduler=image_noising_scheduler, | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
controlnet=controlnet, | |
scheduler=DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler") | |
) | |
pipe = pipe.to(self.device) | |
if is_xformers_available(): | |
pipe.unet.enable_xformers_memory_efficient_attention() | |
pipe.controlnet.enable_xformers_memory_efficient_attention() | |
self.pipe = pipe | |
self.model_id = model_id # type: ignore | |
self.vae = vae | |
# self.feature_extractor = feature_extractor | |
# self.image_encoder = image_encoder | |
## ddim inverse for source video | |
batch = next(iter(train_dataloader)) | |
weight_dtype = torch.float16 | |
pixel_values = batch["pixel_values"].to(weight_dtype).to(self.device) | |
video_length = pixel_values.shape[1] | |
pixel_values = rearrange(pixel_values, "b f c h w -> (b f) c h w") | |
latents = self.vae.encode(pixel_values).latent_dist.sample() | |
latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length) | |
latents = latents * self.vae.config.scaling_factor | |
# ControlNet | |
# ipdb.set_trace() | |
conditions = [_condition.to(weight_dtype).to(self.device) for _, _condition in batch["conditions"].items()] # b f c h w | |
masks = batch["masks"].to(weight_dtype).to(self.device) # b,f,1,h,w | |
emb_dim = train_dataset.img_embeddings[0].size(0) | |
key_frame_embed = torch.zeros((1, emb_dim)).to(device=latents.device, dtype=latents.dtype) ## this is dim 0 | |
# ipdb.set_trace() | |
ddim_inv_latent = ddim_inversion_unclip( | |
self.pipe, self.ddim_inv_scheduler, video_latent=latents, | |
num_inv_steps=n_steps, prompt="", image_embed=key_frame_embed, noise_level=0, seed=seed)[-1].to(weight_dtype) | |
self.conditions = conditions | |
self.masks = masks | |
self.ddim_inv_latent = ddim_inv_latent | |
self.train_dataset = train_dataset | |
self.sample_indices = batch["sample_indices"][0] | |
return conditions, masks, ddim_inv_latent, train_dataset, batch["sample_indices"][0] | |
def run( | |
self, | |
model_id: str, | |
prompt: str, | |
video_length: int, | |
fps: int, | |
seed: int, | |
n_steps: int, | |
guidance_scale: float, | |
ref_image: PIL.Image.Image, | |
ref_pro_prompt: str, | |
noise_level: int, | |
start_step: int, | |
control_pose: float, | |
control_depth: float, | |
source_pro: int = 0, # 0 or 1 | |
source_bg: int = 0, | |
) -> PIL.Image.Image: | |
if not torch.cuda.is_available(): | |
raise gr.Error('CUDA is not available.') | |
torch.cuda.empty_cache() | |
conditions, masks, ddim_inv_latent, _, _ = self.load_pipe(model_id, n_steps, seed) | |
## conditions [1,F,3,H,W] | |
## masks [1,F,1,H,W] | |
## ddim_inv_latent [1,4,F,H,W] | |
## NOTE this is to deal with video length | |
conditions = [_condition[:,:video_length] for _condition in conditions] | |
masks = masks[:, :video_length] | |
ddim_inv_latent = ddim_inv_latent[:,:,:video_length] | |
generator = torch.Generator(device=self.device).manual_seed(seed) | |
## TODO mask out reference image | |
# ipdb.set_trace() | |
ref_image = mask_out_reference_image(ref_image, ref_pro_prompt) | |
controlnet_conditioning_scale = [control_pose, control_depth] | |
prior_denoised_embeds = None | |
image_embed = None | |
if source_bg: | |
## using source background and changing the protagonist | |
prior_denoised_embeds = self.train_dataset.img_embeddings[0][None].to(device=ddim_inv_latent.device, dtype=ddim_inv_latent.dtype) # 1, 768 for UnCLIP-small | |
if source_pro: | |
# using source protagonist and changing the background | |
sample_indices = self.sample_indices | |
image_embed = [self.train_dataset.img_embeddings[idx] for idx in sample_indices] | |
image_embed = torch.stack(image_embed, dim=0).to(device=ddim_inv_latent.device, dtype=ddim_inv_latent.dtype) # F, 768 for UnCLIP-small # F,C | |
image_embed = image_embed[:video_length] | |
ref_image = None | |
# ipdb.set_trace() | |
out = self.pipe( | |
image=ref_image, | |
prompt=prompt, | |
control_image=conditions, | |
video_length=video_length, | |
width=768, | |
height=768, | |
num_inference_steps=n_steps, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
## ddim inversion | |
latents=ddim_inv_latent, | |
## ref image embeds | |
noise_level=noise_level, | |
## controlnet | |
controlnet_conditioning_scale=controlnet_conditioning_scale, | |
## mask | |
masks=masks, | |
mask_mode='all', | |
mask_latent_fuse_mode = 'all', | |
start_step=start_step, | |
## edit bg and pro | |
prior_latents=None, | |
image_embeds=image_embed, # keep pro | |
prior_denoised_embeds=prior_denoised_embeds # keep bg | |
) | |
frames = rearrange(out.videos[0], 'c t h w -> t h w c') | |
frames = (frames * 255).to(torch.uint8).numpy() | |
out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) | |
writer = imageio.get_writer(out_file.name, fps=fps) | |
for frame in frames: | |
writer.append_data(frame) | |
writer.close() | |
return out_file.name | |