|
import fastai |
|
from fastai.vision import * |
|
from fastai.utils.mem import * |
|
from fastai.vision import open_image, load_learner, image, torch |
|
import numpy as np |
|
import urllib.request |
|
import PIL.Image |
|
from io import BytesIO |
|
import torchvision.transforms as T |
|
from PIL import Image |
|
import requests |
|
from io import BytesIO |
|
import fastai |
|
from fastai.vision import * |
|
from fastai.utils.mem import * |
|
from fastai.vision import open_image, load_learner, image, torch |
|
import numpy as np |
|
import urllib.request |
|
import PIL.Image |
|
from PIL import Image |
|
from io import BytesIO |
|
import torchvision.transforms as T |
|
|
|
class FeatureLoss(nn.Module): |
|
def __init__(self, m_feat, layer_ids, layer_wgts): |
|
super().__init__() |
|
self.m_feat = m_feat |
|
self.loss_features = [self.m_feat[i] for i in layer_ids] |
|
self.hooks = hook_outputs(self.loss_features, detach=False) |
|
self.wgts = layer_wgts |
|
self.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids)) |
|
] + [f'gram_{i}' for i in range(len(layer_ids))] |
|
|
|
def make_features(self, x, clone=False): |
|
self.m_feat(x) |
|
return [(o.clone() if clone else o) for o in self.hooks.stored] |
|
|
|
def forward(self, input, target): |
|
out_feat = self.make_features(target, clone=True) |
|
in_feat = self.make_features(input) |
|
self.feat_losses = [base_loss(input,target)] |
|
self.feat_losses += [base_loss(f_in, f_out)*w |
|
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] |
|
self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out))*w**2 * 5e3 |
|
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] |
|
self.metrics = dict(zip(self.metric_names, self.feat_losses)) |
|
return sum(self.feat_losses) |
|
|
|
def __del__(self): self.hooks.remove() |
|
|
|
def add_margin(pil_img, top, right, bottom, left, color): |
|
width, height = pil_img.size |
|
new_width = width + right + left |
|
new_height = height + top + bottom |
|
result = Image.new(pil_img.mode, (new_width, new_height), color) |
|
result.paste(pil_img, (left, top)) |
|
return result |
|
|
|
|
|
MODEL_URL = "https://www.dropbox.com/s/04suaimdpru76h3/ArtLine_920.pkl?dl=1 " |
|
urllib.request.urlretrieve(MODEL_URL, "ArtLine_920.pkl") |
|
path = Path(".") |
|
print(os.listdir('.')) |
|
learn=load_learner(path, 'ArtLine_920.pkl') |
|
|
|
|
|
import gradio as gr |
|
import cv2 |
|
|
|
|
|
def get_filename(prefix="sketch"): |
|
from datetime import datetime |
|
from pytz import timezone |
|
return datetime.now(timezone('Asia/Seoul')).strftime('sketch__%Y-%m-%d %H:%M:%S.jpg') |
|
|
|
def predict(img): |
|
img = PIL.Image.fromarray(img) |
|
img = add_margin(img, 250, 250, 250, 250, (255, 255, 255)) |
|
img = np.array(img) |
|
|
|
h, w = img.shape[:-1] |
|
cv2.imwrite("test.jpg", img) |
|
img_test = open_image("test.jpg") |
|
|
|
p,img_hr,b = learn.predict(img_test) |
|
|
|
res = (img_hr / img_hr.max()).numpy() |
|
res = res[0] |
|
res = cv2.resize(res, (w,h)) |
|
|
|
output_file = get_filename() |
|
|
|
cv2.imwrite(output_file, (res * 255).astype(np.uint8), [cv2.IMWRITE_JPEG_QUALITY, 50]) |
|
|
|
return res, output_file |
|
|
|
iface = gr.Interface( |
|
fn=predict, |
|
inputs="image", |
|
outputs=[gr.Image(label="Sketch Image"), gr.File(label="Result File")], |
|
title="Image-to-sketch", |
|
description="Transfer any image into BW cartoon-style sketch!" |
|
) |
|
|
|
iface.launch(share=True) |