Makhinur commited on
Commit
877fde9
·
verified ·
1 Parent(s): bc55974

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -105
app.py DELETED
@@ -1,105 +0,0 @@
1
- import fastai
2
- from fastai.vision import *
3
- from fastai.utils.mem import *
4
- from fastai.vision import open_image, load_learner, image, torch
5
- import numpy as np
6
- import urllib.request
7
- import PIL.Image
8
- from io import BytesIO
9
- import torchvision.transforms as T
10
- from PIL import Image
11
- import requests
12
- from io import BytesIO
13
- import fastai
14
- from fastai.vision import *
15
- from fastai.utils.mem import *
16
- from fastai.vision import open_image, load_learner, image, torch
17
- import numpy as np
18
- import urllib.request
19
- import PIL.Image
20
- from PIL import Image
21
- from io import BytesIO
22
- import torchvision.transforms as T
23
-
24
- class FeatureLoss(nn.Module):
25
- def __init__(self, m_feat, layer_ids, layer_wgts):
26
- super().__init__()
27
- self.m_feat = m_feat
28
- self.loss_features = [self.m_feat[i] for i in layer_ids]
29
- self.hooks = hook_outputs(self.loss_features, detach=False)
30
- self.wgts = layer_wgts
31
- self.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids))
32
- ] + [f'gram_{i}' for i in range(len(layer_ids))]
33
-
34
- def make_features(self, x, clone=False):
35
- self.m_feat(x)
36
- return [(o.clone() if clone else o) for o in self.hooks.stored]
37
-
38
- def forward(self, input, target):
39
- out_feat = self.make_features(target, clone=True)
40
- in_feat = self.make_features(input)
41
- self.feat_losses = [base_loss(input,target)]
42
- self.feat_losses += [base_loss(f_in, f_out)*w
43
- for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
44
- self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out))*w**2 * 5e3
45
- for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
46
- self.metrics = dict(zip(self.metric_names, self.feat_losses))
47
- return sum(self.feat_losses)
48
-
49
- def __del__(self): self.hooks.remove()
50
-
51
- def add_margin(pil_img, top, right, bottom, left, color):
52
- width, height = pil_img.size
53
- new_width = width + right + left
54
- new_height = height + top + bottom
55
- result = Image.new(pil_img.mode, (new_width, new_height), color)
56
- result.paste(pil_img, (left, top))
57
- return result
58
-
59
-
60
- MODEL_URL = "https://www.dropbox.com/s/04suaimdpru76h3/ArtLine_920.pkl?dl=1 "
61
- urllib.request.urlretrieve(MODEL_URL, "ArtLine_920.pkl")
62
- path = Path(".")
63
- print(os.listdir('.'))
64
- learn=load_learner(path, 'ArtLine_920.pkl')
65
-
66
-
67
- import gradio as gr
68
- import cv2
69
-
70
-
71
- def get_filename(prefix="sketch"):
72
- from datetime import datetime
73
- from pytz import timezone
74
- return datetime.now(timezone('Asia/Seoul')).strftime('sketch__%Y-%m-%d %H:%M:%S.jpg')
75
-
76
- def predict(img):
77
- img = PIL.Image.fromarray(img)
78
- img = add_margin(img, 250, 250, 250, 250, (255, 255, 255))
79
- img = np.array(img)
80
-
81
- h, w = img.shape[:-1]
82
- cv2.imwrite("test.jpg", img)
83
- img_test = open_image("test.jpg")
84
-
85
- p,img_hr,b = learn.predict(img_test)
86
-
87
- res = (img_hr / img_hr.max()).numpy()
88
- res = res[0] # take only first channel as result
89
- res = cv2.resize(res, (w,h))
90
-
91
- output_file = get_filename()
92
-
93
- cv2.imwrite(output_file, (res * 255).astype(np.uint8), [cv2.IMWRITE_JPEG_QUALITY, 50])
94
-
95
- return res, output_file
96
-
97
- iface = gr.Interface(
98
- fn=predict,
99
- inputs="image",
100
- outputs=[gr.Image(label="Sketch Image"), gr.File(label="Result File")],
101
- title="Image-to-sketch",
102
- description="Transfer any image into BW cartoon-style sketch!"
103
- )
104
-
105
- iface.launch(share=True)