Makhinur commited on
Commit
d69b7ce
·
verified ·
1 Parent(s): b695ee9

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +35 -38
main.py CHANGED
@@ -1,52 +1,49 @@
1
- from fastapi import FastAPI, File, UploadFile, Form
2
  from fastapi.responses import JSONResponse
3
- from fastapi.middleware.cors import CORSMiddleware
4
  from gradio_client import Client, handle_file
5
  import os
6
- import tempfile
7
  import base64
8
 
 
9
  app = FastAPI()
10
 
11
- # Setup CORS
12
- app.add_middleware(
13
- CORSMiddleware,
14
- allow_origins=["*"], # Adjust as needed
15
- allow_credentials=True,
16
- allow_methods=["*"],
17
- allow_headers=["*"],
18
- )
19
  HF_TOKEN = os.getenv("HF_TOKEN")
20
 
21
  # Initialize the Gradio client with the token
22
- client = Client("Makhinur/Image_Face_Upscale_Restoration-GFPGAN", hf_token=HF_TOKEN)
23
 
24
  @app.post("/upload/")
25
- async def upload_file(file: UploadFile = File(...), version: str = Form(...), scale: int = Form(...)):
26
- # Save the uploaded file temporarily
27
- with tempfile.NamedTemporaryFile(delete=False) as temp_file:
28
- temp_file.write(await file.read())
29
- temp_file_path = temp_file.name
30
-
31
  try:
32
- # Use handle_file to prepare the file for the Gradio client
33
- result = client.predict(handle_file(temp_file_path), version, scale, api_name="/predict")
34
-
35
- # Check if the result is valid
36
- if result and len(result) == 2:
37
- # Convert the image data to a base64 string
38
- with open(result[0], "rb") as image_file:
39
- image_data = base64.b64encode(image_file.read()).decode("utf-8")
40
-
41
- return JSONResponse({
42
- "sketch_image_base64": f"data:image/png;base64,{image_data}",
43
- "result_file": result[1]
44
- })
45
- else:
46
- return JSONResponse({"error": "Invalid result from the prediction API."}, status_code=500)
47
- except Exception as e:
48
- return JSONResponse({"error": str(e)}, status_code=500)
49
- finally:
50
  # Clean up the temporary file
51
- if os.path.exists(temp_file_path):
52
- os.unlink(temp_file_path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, File, UploadFile, HTTPException
2
  from fastapi.responses import JSONResponse
 
3
  from gradio_client import Client, handle_file
4
  import os
 
5
  import base64
6
 
7
+ # Initialize FastAPI
8
  app = FastAPI()
9
 
10
+ # Load environment variables if needed
 
 
 
 
 
 
 
11
  HF_TOKEN = os.getenv("HF_TOKEN")
12
 
13
  # Initialize the Gradio client with the token
14
+ client = Client("Makhinur/Its", hf_token=HF_TOKEN)
15
 
16
  @app.post("/upload/")
17
+ async def upload_image(file: UploadFile = File(...)):
 
 
 
 
 
18
  try:
19
+ # Save the uploaded file to a temporary location
20
+ file_location = f"temp_{file.filename}"
21
+ with open(file_location, "wb") as f:
22
+ f.write(await file.read())
23
+
24
+ # Use the Gradio client to send the image to the Gradio app
25
+ result = client.predict(
26
+ img=handle_file(file_location),
27
+ api_name="/predict"
28
+ )
29
+
 
 
 
 
 
 
 
30
  # Clean up the temporary file
31
+ os.remove(file_location)
32
+
33
+ # Read the sketch image from the result
34
+ sketch_image_path = result[0] # Path to the sketch image
35
+
36
+ # Convert the sketch image to base64
37
+ with open(sketch_image_path, "rb") as img_file:
38
+ sketch_image_base64 = base64.b64encode(img_file.read()).decode('utf-8')
39
+
40
+ # Prepare the response
41
+ response = {
42
+ "sketch_image_base64": f"data:image/jpeg;base64,{sketch_image_base64}"
43
+ }
44
+
45
+ return JSONResponse(content=response)
46
+
47
+ except Exception as e:
48
+ raise HTTPException(status_code=500, detail=str(e))
49
+