from fastapi import FastAPI, File, UploadFile, Form from fastapi.responses import JSONResponse from fastapi.middleware.cors import CORSMiddleware from gradio_client import Client, handle_file import os import tempfile import base64 app = FastAPI() # Setup CORS app.add_middleware( CORSMiddleware, allow_origins=["*"], # Adjust as needed allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Initialize Gradio client hf_token = os.environ.get('HF_TOKEN') client = Client("https://Makhinur/Image_Face_Upscale_Restoration-GFPGAN.hf.space/", hf_token=hf_token) @app.post("/upload/") async def upload_file(file: UploadFile = File(...), version: str = Form(...), scale: int = Form(...)): # Save the uploaded file temporarily with tempfile.NamedTemporaryFile(delete=False) as temp_file: temp_file.write(await file.read()) temp_file_path = temp_file.name try: # Use handle_file to prepare the file for the Gradio client result = client.predict(handle_file(temp_file_path), version, scale, api_name="/predict") # Check if the result is valid if result and len(result) == 2: # Convert the image data to a base64 string with open(result[0], "rb") as image_file: image_data = base64.b64encode(image_file.read()).decode("utf-8") return JSONResponse({ "sketch_image_base64": f"data:image/png;base64,{image_data}", "result_file": result[1] }) else: return JSONResponse({"error": "Invalid result from the prediction API."}, status_code=500) except Exception as e: return JSONResponse({"error": str(e)}, status_code=500) finally: # Clean up the temporary file if os.path.exists(temp_file_path): os.unlink(temp_file_path)