from fastapi import FastAPI, File, UploadFile, Form from fastapi.responses import JSONResponse from gradio_client import Client, handle_file import shutil import base64 import os from PIL import Image # Import the Pillow library app = FastAPI() HF_TOKEN = os.getenv("HF_TOKEN") # Initialize the Gradio client with the token client = Client("Makhinur/Image_Face_Upscale_Restoration-GFPGAN", hf_token=HF_TOKEN) # Version mapping from HTML to Gradio API version_map = { "M1": "v1.2", "M2": "v1.3", "M3": "v1.4" } @app.post("/upload/") async def enhance_image( file: UploadFile = File(...), version: str = Form(...), scale: int = Form(...) ): # Map version from HTML to Gradio expected value gradio_version = version_map.get(version, "v1.4") # Save the uploaded image to a temporary file temp_file_path = "temp_image.png" with open(temp_file_path, "wb") as buffer: shutil.copyfileobj(file.file, buffer) try: # Use the Gradio client to process the image result = client.predict( img=handle_file(temp_file_path), version=gradio_version, scale=scale, api_name="/predict" ) # Assuming the Gradio app outputs a WebP file result_image_path = result[0] # This path should be a WebP file # Convert the WebP image to PNG using Pillow with Image.open(result_image_path) as img: png_image_path = "output_image.png" img.save(png_image_path, format="PNG") # Read the PNG image and encode it in base64 with open(png_image_path, "rb") as img_file: b64_string = base64.b64encode(img_file.read()).decode('utf-8') # Clean up the temporary files os.remove(temp_file_path) os.remove(png_image_path) return JSONResponse(content={"sketch_image_base64": f"data:image/png;base64,{b64_string}"}) except Exception as e: # Log the error message for debugging print(f"Error processing image: {e}") return JSONResponse(status_code=500, content={"message": "Internal Server Error"})