|
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, PreTrainedTokenizerFast |
|
import gradio as gr |
|
|
|
|
|
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") |
|
vit_feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k") |
|
tokenizer = PreTrainedTokenizerFast.from_pretrained("distilgpt2") |
|
|
|
def vit2distilgpt2(img): |
|
|
|
pixel_values = vit_feature_extractor(images=img, return_tensors="pt").pixel_values |
|
|
|
|
|
encoder_outputs = model.generate(pixel_values.to('cpu'), num_beams=5, num_return_sequences=1) |
|
generated_sentence = tokenizer.decode(encoder_outputs[0], skip_special_tokens=True) |
|
|
|
return generated_sentence |
|
|
|
|
|
inputs = gr.inputs.Image(type="pil", label="Original Image") |
|
outputs = gr.outputs.Textbox(label="Caption") |
|
|
|
title = "Image Captioning using ViT + GPT2" |
|
description = "ViT and GPT2 are used to generate an image caption for the uploaded image. COCO dataset is used for training." |
|
|
|
gr.Interface( |
|
fn=vit2distilgpt2, |
|
inputs=inputs, |
|
outputs=outputs, |
|
title=title, |
|
description=description, |
|
).launch(debug=True, enable_queue=True) |