Spaces:
Sleeping
Sleeping
[email protected]
commited on
Merge pull request #19 from Sunwood-ai-labs/translate-readme-12026473359
Browse files- docs/README.en.md +27 -21
docs/README.en.md
CHANGED
@@ -44,28 +44,28 @@ license: mit
|
|
44 |
|
45 |
## ๐ Project Overview
|
46 |
|
47 |
-
**Llama-finetune-sandbox** provides an experimental environment for learning and verifying Llama model fine-tuning. You can try various fine-tuning methods, customize models, and evaluate performance.
|
48 |
|
49 |
|
50 |
-
## โจ
|
51 |
|
52 |
-
1. **
|
53 |
- LoRA (Low-Rank Adaptation)
|
54 |
- QLoRA (Quantized LoRA)
|
55 |
|
56 |
-
2. **Flexible Model
|
57 |
- Customizable maximum sequence length
|
58 |
- Various quantization options
|
59 |
- Multiple attention mechanisms
|
60 |
|
61 |
3. **Experimental Environment Setup:**
|
62 |
-
-
|
63 |
- Visualization of experimental results
|
64 |
|
65 |
4. **Context-Aware Reflexive QA Generation System:**
|
66 |
- Generates high-quality Q&A datasets from Wikipedia data.
|
67 |
- Uses LLMs to automatically generate context-aware questions and answers, evaluate quality, and iteratively improve them.
|
68 |
-
- Employs a reflexive approach that quantifies factuality, question quality, and answer completeness
|
69 |
- Provides comprehensive code and explanations covering environment setup, model selection, data preprocessing, Q&A pair generation, quality evaluation, and the improvement process.
|
70 |
- Uses libraries such as `litellm`, `wikipedia`, and `transformers`.
|
71 |
- Generated Q&A pairs are saved in JSON format and can be easily uploaded to the Hugging Face Hub.
|
@@ -75,21 +75,21 @@ license: mit
|
|
75 |
|
76 |
This repository includes the following examples:
|
77 |
|
78 |
-
###
|
79 |
-
-
|
80 |
- โ See [`Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md`](sandbox/Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md) for details.
|
81 |
-
- โ [Use this to convert from
|
82 |
- [๐Notebook here](https://colab.research.google.com/drive/1AjtWF2vOEwzIoCMmlQfSTYCVgy4Y78Wi?usp=sharing)
|
83 |
|
84 |
-
### Efficient Model
|
85 |
-
- Setup and
|
86 |
- โ See [`efficient-ollama-colab-setup-with-litellm-guide.md`](sandbox/efficient-ollama-colab-setup-with-litellm-guide.md) for details.
|
87 |
- [๐Notebook here](https://colab.research.google.com/drive/1buTPds1Go1NbZOLlpG94VG22GyK-F4GW?usp=sharing)
|
88 |
|
89 |
### Q&A Dataset Generation from Wikipedia Data (Sentence Pool QA Method)
|
90 |
- High-quality Q&A dataset generation using the sentence pool QA method.
|
91 |
-
- โ A new dataset creation method that generates Q&A pairs while preserving context by pooling
|
92 |
-
- โ Chunk size is flexibly adjustable (default 200 characters)
|
93 |
- โ See [`wikipedia-qa-dataset-generator.md`](sandbox/wikipedia-qa-dataset-generator.md) for details.
|
94 |
- [๐Notebook here](https://colab.research.google.com/drive/1mmK5vxUzjk3lI6OnEPrQqyjSzqsEoXpk?usp=sharing)
|
95 |
|
@@ -97,10 +97,18 @@ This repository includes the following examples:
|
|
97 |
- Q&A dataset generation with reflexive quality improvement.
|
98 |
- โ A new method that automatically evaluates the quality of generated Q&A pairs and iteratively improves them.
|
99 |
- โ Quantifies factuality, question quality, and answer completeness for evaluation.
|
100 |
-
- โ Uses contextual information for
|
101 |
- โ See [`context_aware_Reflexive_qa_generator_V2.md`](sandbox/context_aware_Reflexive_qa_generator_V2.md) for details.
|
102 |
- [๐Notebook here](https://colab.research.google.com/drive/1OYdgAuXHbl-0LUJgkLl_VqknaAEmAm0S?usp=sharing)
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
## ๐ ๏ธ Setup
|
106 |
|
@@ -113,29 +121,27 @@ cd Llama-finetune-sandbox
|
|
113 |
## ๐ Adding Examples
|
114 |
|
115 |
1. Add new implementations to the `sandbox/` directory.
|
116 |
-
2. Add necessary
|
117 |
-
3. Update documentation and tests (Removed as
|
118 |
4. Create a pull request.
|
119 |
|
120 |
-
|
121 |
## ๐ค Contributions
|
122 |
|
123 |
- Implementation of new fine-tuning methods
|
124 |
- Bug fixes and feature improvements
|
125 |
- Documentation improvements
|
126 |
-
-
|
127 |
|
128 |
## ๐ References
|
129 |
|
130 |
- [HuggingFace PEFT Documentation](https://huggingface.co/docs/peft)
|
131 |
-
- [About Llama
|
132 |
-
- [Fine-tuning
|
133 |
|
134 |
## ๐ License
|
135 |
|
136 |
This project is licensed under the MIT License.
|
137 |
|
138 |
-
|
139 |
## v0.5.0 Updates
|
140 |
|
141 |
**๐ What's New:**
|
|
|
44 |
|
45 |
## ๐ Project Overview
|
46 |
|
47 |
+
**Llama-finetune-sandbox** provides an experimental environment for learning and verifying Llama model fine-tuning. You can try various fine-tuning methods, customize models, and evaluate performance. It caters to a wide range of users, from beginners to researchers. Version 0.5.0 includes updated documentation and the addition of a context-aware reflexive QA generation system. This system generates high-quality Q&A datasets from Wikipedia data, leveraging LLMs to iteratively improve the quality of questions and answers, resulting in a more accurate dataset.
|
48 |
|
49 |
|
50 |
+
## โจ Main Features
|
51 |
|
52 |
+
1. **Various Fine-tuning Methods:**
|
53 |
- LoRA (Low-Rank Adaptation)
|
54 |
- QLoRA (Quantized LoRA)
|
55 |
|
56 |
+
2. **Flexible Model Settings:**
|
57 |
- Customizable maximum sequence length
|
58 |
- Various quantization options
|
59 |
- Multiple attention mechanisms
|
60 |
|
61 |
3. **Experimental Environment Setup:**
|
62 |
+
- Optimized memory usage
|
63 |
- Visualization of experimental results
|
64 |
|
65 |
4. **Context-Aware Reflexive QA Generation System:**
|
66 |
- Generates high-quality Q&A datasets from Wikipedia data.
|
67 |
- Uses LLMs to automatically generate context-aware questions and answers, evaluate quality, and iteratively improve them.
|
68 |
+
- Employs a reflexive approach that quantifies factuality, question quality, and answer completeness for iterative improvement.
|
69 |
- Provides comprehensive code and explanations covering environment setup, model selection, data preprocessing, Q&A pair generation, quality evaluation, and the improvement process.
|
70 |
- Uses libraries such as `litellm`, `wikipedia`, and `transformers`.
|
71 |
- Generated Q&A pairs are saved in JSON format and can be easily uploaded to the Hugging Face Hub.
|
|
|
75 |
|
76 |
This repository includes the following examples:
|
77 |
|
78 |
+
### High-Speed Fine-tuning using Unsloth
|
79 |
+
- High-speed fine-tuning implementation for Llama-3.2-1B/3B models.
|
80 |
- โ See [`Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md`](sandbox/Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md) for details.
|
81 |
+
- โ [Use this to convert from Markdown to Notebook format](https://huggingface.co/spaces/MakiAi/JupytextWebUI)
|
82 |
- [๐Notebook here](https://colab.research.google.com/drive/1AjtWF2vOEwzIoCMmlQfSTYCVgy4Y78Wi?usp=sharing)
|
83 |
|
84 |
+
### Efficient Model Operation using Ollama and LiteLLM
|
85 |
+
- Setup and operation guide for Google Colab.
|
86 |
- โ See [`efficient-ollama-colab-setup-with-litellm-guide.md`](sandbox/efficient-ollama-colab-setup-with-litellm-guide.md) for details.
|
87 |
- [๐Notebook here](https://colab.research.google.com/drive/1buTPds1Go1NbZOLlpG94VG22GyK-F4GW?usp=sharing)
|
88 |
|
89 |
### Q&A Dataset Generation from Wikipedia Data (Sentence Pool QA Method)
|
90 |
- High-quality Q&A dataset generation using the sentence pool QA method.
|
91 |
+
- โ A new dataset creation method that generates Q&A pairs while preserving context by pooling sentence chunks delimited by periods.
|
92 |
+
- โ Chunk size is flexibly adjustable (default 200 characters) allowing generation of Q&A pairs with optimal context range depending on the application.
|
93 |
- โ See [`wikipedia-qa-dataset-generator.md`](sandbox/wikipedia-qa-dataset-generator.md) for details.
|
94 |
- [๐Notebook here](https://colab.research.google.com/drive/1mmK5vxUzjk3lI6OnEPrQqyjSzqsEoXpk?usp=sharing)
|
95 |
|
|
|
97 |
- Q&A dataset generation with reflexive quality improvement.
|
98 |
- โ A new method that automatically evaluates the quality of generated Q&A pairs and iteratively improves them.
|
99 |
- โ Quantifies factuality, question quality, and answer completeness for evaluation.
|
100 |
+
- โ Uses contextual information for accurate question generation and answer consistency checks.
|
101 |
- โ See [`context_aware_Reflexive_qa_generator_V2.md`](sandbox/context_aware_Reflexive_qa_generator_V2.md) for details.
|
102 |
- [๐Notebook here](https://colab.research.google.com/drive/1OYdgAuXHbl-0LUJgkLl_VqknaAEmAm0S?usp=sharing)
|
103 |
|
104 |
+
### LLM Evaluation System (LLMs as a Judge)
|
105 |
+
- Advanced quality evaluation system utilizing LLMs as evaluators.
|
106 |
+
- โ Automatically evaluates questions, model answers, and LLM answers on a 4-level scale.
|
107 |
+
- โ Robust design with error handling and retry functionality.
|
108 |
+
- โ Generates detailed evaluation reports in CSV and HTML formats.
|
109 |
+
- โ See [`LLMs_as_a_Judge_TOHO_V2.md`](sandbox/LLMs_as_a_Judge_TOHO_V2.md) for details.
|
110 |
+
- [๐Notebook here](https://colab.research.google.com/drive/1Zjw3sOMa2v5RFD8dFfxMZ4NDGFoQOL7s?usp=sharing)
|
111 |
+
|
112 |
|
113 |
## ๐ ๏ธ Setup
|
114 |
|
|
|
121 |
## ๐ Adding Examples
|
122 |
|
123 |
1. Add new implementations to the `sandbox/` directory.
|
124 |
+
2. Add necessary settings and utilities to `utils/` (Removed as it doesn't currently exist).
|
125 |
+
3. Update documentation and tests (Removed as it doesn't currently exist).
|
126 |
4. Create a pull request.
|
127 |
|
|
|
128 |
## ๐ค Contributions
|
129 |
|
130 |
- Implementation of new fine-tuning methods
|
131 |
- Bug fixes and feature improvements
|
132 |
- Documentation improvements
|
133 |
+
- Adding usage examples
|
134 |
|
135 |
## ๐ References
|
136 |
|
137 |
- [HuggingFace PEFT Documentation](https://huggingface.co/docs/peft)
|
138 |
+
- [About Llama Models](https://github.com/facebookresearch/llama)
|
139 |
+
- [Fine-tuning Best Practices](https://github.com/Sunwood-ai-labs/Llama-finetune-sandbox/wiki) (Removed as it doesn't currently exist)
|
140 |
|
141 |
## ๐ License
|
142 |
|
143 |
This project is licensed under the MIT License.
|
144 |
|
|
|
145 |
## v0.5.0 Updates
|
146 |
|
147 |
**๐ What's New:**
|