Spaces:
Sleeping
Sleeping
iris-s-coon
commited on
Commit
·
16a7f59
1
Parent(s):
cdd8a80
📖 [docs] 英語READMEの更新
Browse files- docs/README.en.md +34 -25
docs/README.en.md
CHANGED
@@ -31,7 +31,7 @@ license: mit
|
|
31 |
</p>
|
32 |
|
33 |
<h2 align="center">
|
34 |
-
|
35 |
</h2>
|
36 |
|
37 |
<p align="center">
|
@@ -44,7 +44,7 @@ license: mit
|
|
44 |
|
45 |
## 🚀 Project Overview
|
46 |
|
47 |
-
**Llama-finetune-sandbox** provides an experimental environment for learning and
|
48 |
|
49 |
|
50 |
## ✨ Key Features
|
@@ -53,14 +53,14 @@ license: mit
|
|
53 |
- LoRA (Low-Rank Adaptation)
|
54 |
- QLoRA (Quantized LoRA)
|
55 |
|
56 |
-
2. **Flexible Model
|
57 |
- Customizable maximum sequence length
|
58 |
- Various quantization options
|
59 |
- Multiple attention mechanisms
|
60 |
|
61 |
-
3. **
|
62 |
-
- Performance evaluation tools (added in v0.3.0,
|
63 |
-
-
|
64 |
- Visualization of experimental results
|
65 |
|
66 |
## 📚 Examples
|
@@ -68,31 +68,39 @@ license: mit
|
|
68 |
This repository includes the following examples:
|
69 |
|
70 |
### Fast Fine-tuning using Unsloth
|
71 |
-
- Implementation of fast fine-tuning for Llama-3.2-1B/3B models
|
72 |
-
- → See [`Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md`](sandbox/Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md) for details.
|
73 |
-
- → Use
|
74 |
- [📒Notebook here](https://colab.research.google.com/drive/1AjtWF2vOEwzIoCMmlQfSTYCVgy4Y78Wi?usp=sharing)
|
75 |
|
76 |
### Efficient Model Deployment using Ollama and LiteLLM
|
77 |
-
- Setup and
|
78 |
- → See [`efficient-ollama-colab-setup-with-litellm-guide.md`](sandbox/efficient-ollama-colab-setup-with-litellm-guide.md) for details.
|
79 |
- [📒Notebook here](https://colab.research.google.com/drive/1buTPds1Go1NbZOLlpG94VG22GyK-F4GW?usp=sharing)
|
80 |
|
81 |
### LLM Evaluation System (LLMs as a Judge)
|
82 |
-
- Implementation of a system for automatically evaluating the quality of LLM responses (added in v0.3.0,
|
83 |
-
-
|
84 |
-
- Quantitative quality assessment and feedback generation using a 4-level rating scale
|
85 |
- → See [`llm-evaluator-notebook.md`](sandbox/llm-evaluator-notebook.md) for details.
|
86 |
-
- Efficient evaluation system using Gemini and LiteLLM
|
87 |
- [📒Notebook here](https://colab.research.google.com/drive/1haO44IeseQ3OL92HlsINAgBI_yA1fxcJ?usp=sharing)
|
88 |
|
89 |
-
### Wikipedia Data-based Q&A Dataset Generation (Sentence Pool QA Method)
|
90 |
-
- Generation of high-quality Q&A datasets using the sentence pool QA method.
|
91 |
-
- → A new dataset creation method that generates Q&A pairs while preserving context by pooling sentences separated by periods.
|
92 |
-
- → Chunk size is flexibly adjustable (default 200 characters) to generate Q&A pairs with optimal context ranges for different purposes.
|
93 |
-
- → See [`wikipedia-qa-dataset-generator.md`](sandbox/wikipedia-qa-dataset-generator.md) for details.
|
94 |
-
- [📒Notebook here](https://colab.research.google.com/drive/1mmK5vxUzjk3lI6OnEPrQqyjSzqsEoXpk?usp=sharing)
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
## 🛠️ Setup
|
98 |
|
@@ -111,10 +119,10 @@ cd Llama-finetune-sandbox
|
|
111 |
|
112 |
## 🤝 Contributions
|
113 |
|
114 |
-
- Implementation of new fine-tuning methods
|
115 |
-
- Bug fixes and feature improvements
|
116 |
-
- Documentation improvements
|
117 |
-
-
|
118 |
|
119 |
## 📚 References
|
120 |
|
@@ -124,4 +132,5 @@ cd Llama-finetune-sandbox
|
|
124 |
|
125 |
## 📄 License
|
126 |
|
127 |
-
This project is licensed under the MIT License.
|
|
|
|
31 |
</p>
|
32 |
|
33 |
<h2 align="center">
|
34 |
+
~ Experimental Environment for Fine-tuning Llama Models ~
|
35 |
</h2>
|
36 |
|
37 |
<p align="center">
|
|
|
44 |
|
45 |
## 🚀 Project Overview
|
46 |
|
47 |
+
**Llama-finetune-sandbox** provides an experimental environment for learning and verifying the fine-tuning of Llama models. You can try various fine-tuning methods, customize models, and evaluate their performance. It caters to a wide range of users, from beginners to researchers. Version 0.3.0 includes improved documentation and an updated English README.
|
48 |
|
49 |
|
50 |
## ✨ Key Features
|
|
|
53 |
- LoRA (Low-Rank Adaptation)
|
54 |
- QLoRA (Quantized LoRA)
|
55 |
|
56 |
+
2. **Flexible Model Settings**:
|
57 |
- Customizable maximum sequence length
|
58 |
- Various quantization options
|
59 |
- Multiple attention mechanisms
|
60 |
|
61 |
+
3. **Experimental Environment Setup**:
|
62 |
+
- Performance evaluation tools (added in v0.3.0, subsequently removed)
|
63 |
+
- Memory usage optimization
|
64 |
- Visualization of experimental results
|
65 |
|
66 |
## 📚 Examples
|
|
|
68 |
This repository includes the following examples:
|
69 |
|
70 |
### Fast Fine-tuning using Unsloth
|
71 |
+
- Implementation of fast fine-tuning for Llama-3.2-1B/3B models
|
72 |
+
- → See [`Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md`](sandbox/Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md) for details.
|
73 |
+
- → [Use this to convert from markdown to notebook format](https://huggingface.co/spaces/MakiAi/JupytextWebUI)
|
74 |
- [📒Notebook here](https://colab.research.google.com/drive/1AjtWF2vOEwzIoCMmlQfSTYCVgy4Y78Wi?usp=sharing)
|
75 |
|
76 |
### Efficient Model Deployment using Ollama and LiteLLM
|
77 |
+
- Setup and usage guide on Google Colab
|
78 |
- → See [`efficient-ollama-colab-setup-with-litellm-guide.md`](sandbox/efficient-ollama-colab-setup-with-litellm-guide.md) for details.
|
79 |
- [📒Notebook here](https://colab.research.google.com/drive/1buTPds1Go1NbZOLlpG94VG22GyK-F4GW?usp=sharing)
|
80 |
|
81 |
### LLM Evaluation System (LLMs as a Judge)
|
82 |
+
- Implementation of a system for automatically evaluating the quality of LLM responses (added in v0.3.0, subsequently removed)
|
83 |
+
- Utilizing LLMs as evaluators to assess the responses of other LLMs (LLMs as a Judge method)
|
84 |
+
- Quantitative quality assessment and feedback generation using a 4-level rating scale
|
85 |
- → See [`llm-evaluator-notebook.md`](sandbox/llm-evaluator-notebook.md) for details.
|
86 |
+
- Efficient evaluation system using Gemini and LiteLLM
|
87 |
- [📒Notebook here](https://colab.research.google.com/drive/1haO44IeseQ3OL92HlsINAgBI_yA1fxcJ?usp=sharing)
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
### Wikipedia Data-based Q&A Dataset Generation (Sentence Pool QA Method)
|
91 |
+
- High-quality Q&A dataset generation using the Sentence Pool QA method
|
92 |
+
- → A new dataset creation method that generates Q&A pairs while maintaining context by pooling sentences separated by punctuation marks.
|
93 |
+
- → Chunk size is flexibly adjustable (default 200 characters) to generate Q&A pairs with optimal context range depending on the application.
|
94 |
+
- → See [`wikipedia-qa-dataset-generator.md`](sandbox/wikipedia-qa-dataset-generator.md) for details.
|
95 |
+
- [📒Notebook here](https://colab.research.google.com/drive/1mmK5vxUzjk3lI6OnEPrQqyjSzqsEoXpk?usp=sharing)
|
96 |
+
|
97 |
+
### Context-Aware Reflexive QA Generation System
|
98 |
+
- Q&A dataset generation with reflexive quality improvement
|
99 |
+
- → A new method that automatically evaluates the quality of generated Q&A pairs and iteratively improves them.
|
100 |
+
- → Quantifies and evaluates factuality, question quality, and answer completeness.
|
101 |
+
- → High-precision question generation and answer consistency check using contextual information.
|
102 |
+
- → See [`context_aware_Reflexive_qa_generator_V2.md`](sandbox/context_aware_Reflexive_qa_generator_V2.md) for details.
|
103 |
+
- [📒Notebook here](https://colab.research.google.com/drive/1OYdgAuXHbl-0LUJgkLl_VqknaAEmAm0S?usp=sharing)
|
104 |
|
105 |
## 🛠️ Setup
|
106 |
|
|
|
119 |
|
120 |
## 🤝 Contributions
|
121 |
|
122 |
+
- Implementation of new fine-tuning methods
|
123 |
+
- Bug fixes and feature improvements
|
124 |
+
- Documentation improvements
|
125 |
+
- Adding examples
|
126 |
|
127 |
## 📚 References
|
128 |
|
|
|
132 |
|
133 |
## 📄 License
|
134 |
|
135 |
+
This project is licensed under the MIT License.
|
136 |
+
```
|