[email protected] commited on
Commit
382f127
ยท
2 Parent(s): 1f7412d f975c64

Merge pull request #22 from Sunwood-ai-labs/translate-readme-12026839076

Browse files
Files changed (1) hide show
  1. docs/README.en.md +46 -52
docs/README.en.md CHANGED
@@ -31,7 +31,7 @@ license: mit
31
  </p>
32
 
33
  <h2 align="center">
34
- Llama Model Fine-tuning Experimentation Environment
35
  </h2>
36
 
37
  <p align="center">
@@ -44,86 +44,93 @@ license: mit
44
 
45
  ## ๐Ÿš€ Project Overview
46
 
47
- **Llama-finetune-sandbox** provides an experimental environment for learning and verifying the fine-tuning of Llama models. You can try various fine-tuning methods, customize models, and evaluate performance. It caters to a wide range of users, from beginners to researchers. Version 0.5.0 includes updated documentation and the addition of a context-aware reflexive QA generation system. This system generates high-quality Q&A datasets from Wikipedia data, leveraging LLMs to iteratively improve the quality of questions and answers, resulting in a more accurate dataset.
48
 
49
 
50
- ## โœจ Key Features
51
 
52
- 1. **Diverse Fine-tuning Methods:**
53
  - LoRA (Low-Rank Adaptation)
54
  - QLoRA (Quantized LoRA)
55
 
56
- 2. **Flexible Model Configuration:**
57
  - Customizable maximum sequence length
58
  - Various quantization options
59
  - Multiple attention mechanisms
60
 
61
- 3. **Well-equipped Experimentation Environment:**
62
- - Optimized memory usage
63
  - Visualization of experimental results
64
 
65
- 4. **Context-Aware Reflexive QA Generation System:**
66
  - Generates high-quality Q&A datasets from Wikipedia data.
67
- - Uses LLMs to automatically generate context-aware questions and answers, evaluate quality, and iteratively improve them.
68
- - Employs a reflexive approach, quantifying factuality, question quality, and answer completeness for iterative improvement.
69
  - Provides comprehensive code and explanations covering environment setup, model selection, data preprocessing, Q&A pair generation, quality evaluation, and the improvement process.
70
- - Utilizes libraries such as `litellm`, `wikipedia`, and `transformers`.
71
  - Generated Q&A pairs are saved in JSON format and can be easily uploaded to the Hugging Face Hub.
72
 
 
 
 
 
 
73
 
74
- ## ๐Ÿ“š Examples
75
 
76
- This repository includes the following examples:
77
 
78
- ### Fast Fine-tuning using Unsloth
79
- - Implementation of fast fine-tuning for Llama-3.2-1B/3B models.
 
 
 
 
 
 
 
 
 
 
 
 
80
  - โ†’ See [`Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md`](sandbox/Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md) for details.
81
  - โ†’ [Use this to convert from markdown to notebook format](https://huggingface.co/spaces/MakiAi/JupytextWebUI)
82
  - [๐Ÿ“’Notebook here](https://colab.research.google.com/drive/1AjtWF2vOEwzIoCMmlQfSTYCVgy4Y78Wi?usp=sharing)
83
 
84
- ### Efficient Model Deployment using Ollama and LiteLLM
85
- - Setup and deployment guide on Google Colab.
86
  - โ†’ See [`efficient-ollama-colab-setup-with-litellm-guide.md`](sandbox/efficient-ollama-colab-setup-with-litellm-guide.md) for details.
87
  - [๐Ÿ“’Notebook here](https://colab.research.google.com/drive/1buTPds1Go1NbZOLlpG94VG22GyK-F4GW?usp=sharing)
88
 
89
  ### Q&A Dataset Generation from Wikipedia Data (Sentence Pool QA Method)
90
- - High-quality Q&A dataset generation using the sentence pool QA method.
91
- - โ†’ A new dataset creation method that generates Q&A pairs while preserving context by pooling sentence segments delimited by punctuation.
92
- - โ†’ Chunk size is flexibly adjustable (default 200 characters) to generate Q&A pairs with an optimal context range depending on the application.
93
  - โ†’ See [`wikipedia-qa-dataset-generator.md`](sandbox/wikipedia-qa-dataset-generator.md) for details.
94
  - [๐Ÿ“’Notebook here](https://colab.research.google.com/drive/1mmK5vxUzjk3lI6OnEPrQqyjSzqsEoXpk?usp=sharing)
95
 
96
  ### Context-Aware Reflexive QA Generation System
97
- - Q&A dataset generation with reflexive quality improvement.
98
- - โ†’ Automatically evaluates the quality of generated Q&A pairs and iteratively improves them.
99
  - โ†’ Quantifies factuality, question quality, and answer completeness for evaluation.
100
- - โ†’ Generates high-precision questions and performs consistency checks on answers using contextual information.
101
  - โ†’ See [`context_aware_Reflexive_qa_generator_V2.md`](sandbox/context_aware_Reflexive_qa_generator_V2.md) for details.
102
  - [๐Ÿ“’Notebook here](https://colab.research.google.com/drive/1OYdgAuXHbl-0LUJgkLl_VqknaAEmAm0S?usp=sharing)
103
 
104
  ### LLM Evaluation System (LLMs as a Judge)
105
- - Advanced quality evaluation system using LLMs as evaluators.
106
- - โ†’ Automatically evaluates questions, model answers, and LLM responses on a four-level scale.
107
- - โ†’ Robust design with error handling and retry functions.
108
  - โ†’ Generates detailed evaluation reports in CSV and HTML formats.
109
  - โ†’ See [`LLMs_as_a_Judge_TOHO_V2.md`](sandbox/LLMs_as_a_Judge_TOHO_V2.md) for details.
110
  - [๐Ÿ“’Notebook here](https://colab.research.google.com/drive/1Zjw3sOMa2v5RFD8dFfxMZ4NDGFoQOL7s?usp=sharing)
111
 
112
 
113
- ## ๐Ÿ› ๏ธ Setup
114
 
115
- 1. Clone the repository:
116
- ```bash
117
- git clone https://github.com/Sunwood-ai-labs/Llama-finetune-sandbox.git
118
- cd Llama-finetune-sandbox
119
- ```
120
 
121
- ## ๐Ÿ“ Adding Examples
122
-
123
- 1. Add new implementations to the `sandbox/` directory.
124
- 2. Add necessary settings and utilities to `utils/` (This section was removed as `utils/` directory appears not to exist).
125
- 3. Update documentation and tests (This section was removed as there's no mention of existing tests).
126
- 4. Create a pull request.
127
 
128
  ## ๐Ÿค Contributions
129
 
@@ -132,19 +139,6 @@ cd Llama-finetune-sandbox
132
  - Documentation improvements
133
  - Addition of usage examples
134
 
135
- ## ๐Ÿ“š References
136
-
137
- - [HuggingFace PEFT documentation](https://huggingface.co/docs/peft)
138
- - [About Llama models](https://github.com/facebookresearch/llama)
139
- - [Fine-tuning best practices](https://github.com/Sunwood-ai-labs/Llama-finetune-sandbox/wiki) (This section was removed as the wiki page appears not to exist).
140
-
141
  ## ๐Ÿ“„ License
142
 
143
- This project is licensed under the MIT License.
144
-
145
- ## v0.5.0 Updates
146
-
147
- **๐Ÿ†• What's New:**
148
-
149
- - Implementation of the context-aware reflexive QA generation system.
150
- - Addition of relevant information to README.md.
 
31
  </p>
32
 
33
  <h2 align="center">
34
+ ๏ฝž Llama Model Fine-tuning Experiment Environment ๏ฝž
35
  </h2>
36
 
37
  <p align="center">
 
44
 
45
  ## ๐Ÿš€ Project Overview
46
 
47
+ **Llama-finetune-sandbox** provides an experimental environment for learning and validating fine-tuning of Llama models. You can try various fine-tuning methods, customize models, and evaluate their performance. It caters to a wide range of users, from beginners to researchers. Version 0.6.0 includes updated documentation and the implementation of an LLM evaluation system. This system automatically evaluates the quality of LLM responses and generates detailed evaluation reports.
48
 
49
 
50
+ ## โœจ Main Features
51
 
52
+ 1. **Diverse Fine-tuning Methods**:
53
  - LoRA (Low-Rank Adaptation)
54
  - QLoRA (Quantized LoRA)
55
 
56
+ 2. **Flexible Model Settings**:
57
  - Customizable maximum sequence length
58
  - Various quantization options
59
  - Multiple attention mechanisms
60
 
61
+ 3. **Experiment Environment Setup**:
62
+ - Memory usage optimization
63
  - Visualization of experimental results
64
 
65
+ 4. **Context-Aware Reflexive QA Generation System**:
66
  - Generates high-quality Q&A datasets from Wikipedia data.
67
+ - Utilizes LLMs to generate context-aware questions and answers, automatically evaluate quality, and iteratively improve them.
68
+ - Employs a reflexive approach, quantifying factuality, question quality, and answer completeness to enable incremental improvements.
69
  - Provides comprehensive code and explanations covering environment setup, model selection, data preprocessing, Q&A pair generation, quality evaluation, and the improvement process.
70
+ - Uses libraries such as `litellm`, `wikipedia`, and `transformers`.
71
  - Generated Q&A pairs are saved in JSON format and can be easily uploaded to the Hugging Face Hub.
72
 
73
+ 5. **LLM Evaluation System**:
74
+ - Automatically evaluates the quality of LLM responses.
75
+ - Evaluates questions, model answers, and LLM responses on a 4-point scale, generating detailed evaluation reports.
76
+ - Features error handling, retry functionality, logging, customizable evaluation criteria, and report generation in CSV and HTML formats.
77
+ - Also includes functionality for uploading to the Hugging Face Hub.
78
 
 
79
 
80
+ ## ๐Ÿ”ง Usage
81
 
82
+ Refer to the notebooks in this repository.
83
+
84
+
85
+ ## ๐Ÿ“ฆ Installation Instructions
86
+
87
+ Refer to `requirements.txt` and install the necessary packages.
88
+
89
+
90
+ ## ๐Ÿ“š Implementation Examples
91
+
92
+ This repository includes the following implementation examples:
93
+
94
+ ### High-Speed Fine-tuning using Unsloth
95
+ - High-speed fine-tuning implementation for Llama-3.2-1B/3B models
96
  - โ†’ See [`Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md`](sandbox/Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md) for details.
97
  - โ†’ [Use this to convert from markdown to notebook format](https://huggingface.co/spaces/MakiAi/JupytextWebUI)
98
  - [๐Ÿ“’Notebook here](https://colab.research.google.com/drive/1AjtWF2vOEwzIoCMmlQfSTYCVgy4Y78Wi?usp=sharing)
99
 
100
+ ### Efficient Model Operation using Ollama and LiteLLM
101
+ - Setup and operation guide for Google Colab
102
  - โ†’ See [`efficient-ollama-colab-setup-with-litellm-guide.md`](sandbox/efficient-ollama-colab-setup-with-litellm-guide.md) for details.
103
  - [๐Ÿ“’Notebook here](https://colab.research.google.com/drive/1buTPds1Go1NbZOLlpG94VG22GyK-F4GW?usp=sharing)
104
 
105
  ### Q&A Dataset Generation from Wikipedia Data (Sentence Pool QA Method)
106
+ - High-quality Q&A dataset generation using the sentence pool QA method
107
+ - โ†’ A new dataset creation method that retains context by pooling sentences separated by punctuation marks.
108
+ - โ†’ Chunk size is flexibly adjustable (default 200 characters) to generate Q&A pairs with optimal context ranges for various applications.
109
  - โ†’ See [`wikipedia-qa-dataset-generator.md`](sandbox/wikipedia-qa-dataset-generator.md) for details.
110
  - [๐Ÿ“’Notebook here](https://colab.research.google.com/drive/1mmK5vxUzjk3lI6OnEPrQqyjSzqsEoXpk?usp=sharing)
111
 
112
  ### Context-Aware Reflexive QA Generation System
113
+ - Q&A dataset generation with reflexive quality improvement
114
+ - โ†’ A new method that automatically evaluates the quality of generated Q&A pairs and iteratively improves them.
115
  - โ†’ Quantifies factuality, question quality, and answer completeness for evaluation.
116
+ - โ†’ Uses contextual information for high-precision question generation and answer consistency checks.
117
  - โ†’ See [`context_aware_Reflexive_qa_generator_V2.md`](sandbox/context_aware_Reflexive_qa_generator_V2.md) for details.
118
  - [๐Ÿ“’Notebook here](https://colab.research.google.com/drive/1OYdgAuXHbl-0LUJgkLl_VqknaAEmAm0S?usp=sharing)
119
 
120
  ### LLM Evaluation System (LLMs as a Judge)
121
+ - Advanced quality evaluation system utilizing LLMs as evaluators
122
+ - โ†’ Automatically evaluates questions, model answers, and LLM responses on a 4-point scale.
123
+ - โ†’ Robust design with error handling and retry functionality.
124
  - โ†’ Generates detailed evaluation reports in CSV and HTML formats.
125
  - โ†’ See [`LLMs_as_a_Judge_TOHO_V2.md`](sandbox/LLMs_as_a_Judge_TOHO_V2.md) for details.
126
  - [๐Ÿ“’Notebook here](https://colab.research.google.com/drive/1Zjw3sOMa2v5RFD8dFfxMZ4NDGFoQOL7s?usp=sharing)
127
 
128
 
129
+ ## ๐Ÿ†• What's New (v0.6.0)
130
 
131
+ - **Implementation of the LLM Evaluation System**: Added a system to automatically evaluate the quality of LLM responses. Questions, model answers, and LLM answers are compared and evaluated on a 4-point scale. Features error handling, retry functionality, logging, customizable evaluation criteria, and report generation in CSV and HTML formats.
132
+ - Added information about the LLM evaluation system to README.md
 
 
 
133
 
 
 
 
 
 
 
134
 
135
  ## ๐Ÿค Contributions
136
 
 
139
  - Documentation improvements
140
  - Addition of usage examples
141
 
 
 
 
 
 
 
142
  ## ๐Ÿ“„ License
143
 
144
+ This project is licensed under the MIT License.