[email protected] commited on
Commit
41a0c51
·
2 Parent(s): 3d773b0 56a1ce5

Merge pull request #20 from Sunwood-ai-labs/translate-readme-12026499970

Browse files
Files changed (1) hide show
  1. docs/README.en.md +26 -26
docs/README.en.md CHANGED
@@ -31,7 +31,7 @@ license: mit
31
  </p>
32
 
33
  <h2 align="center">
34
- Llama Model Fine-tuning Experimental Environment
35
  </h2>
36
 
37
  <p align="center">
@@ -44,30 +44,30 @@ license: mit
44
 
45
  ## 🚀 Project Overview
46
 
47
- **Llama-finetune-sandbox** provides an experimental environment for learning and verifying Llama model fine-tuning. You can try various fine-tuning methods, customize models, and evaluate performance. It caters to a wide range of users, from beginners to researchers. Version 0.5.0 includes updated documentation and the addition of a context-aware reflexive QA generation system. This system generates high-quality Q&A datasets from Wikipedia data, leveraging LLMs to iteratively improve the quality of questions and answers, resulting in a more accurate dataset.
48
 
49
 
50
- ## ✨ Main Features
51
 
52
- 1. **Various Fine-tuning Methods:**
53
  - LoRA (Low-Rank Adaptation)
54
  - QLoRA (Quantized LoRA)
55
 
56
- 2. **Flexible Model Settings:**
57
  - Customizable maximum sequence length
58
  - Various quantization options
59
  - Multiple attention mechanisms
60
 
61
- 3. **Experimental Environment Setup:**
62
  - Optimized memory usage
63
  - Visualization of experimental results
64
 
65
  4. **Context-Aware Reflexive QA Generation System:**
66
  - Generates high-quality Q&A datasets from Wikipedia data.
67
  - Uses LLMs to automatically generate context-aware questions and answers, evaluate quality, and iteratively improve them.
68
- - Employs a reflexive approach that quantifies factuality, question quality, and answer completeness for iterative improvement.
69
  - Provides comprehensive code and explanations covering environment setup, model selection, data preprocessing, Q&A pair generation, quality evaluation, and the improvement process.
70
- - Uses libraries such as `litellm`, `wikipedia`, and `transformers`.
71
  - Generated Q&A pairs are saved in JSON format and can be easily uploaded to the Hugging Face Hub.
72
 
73
 
@@ -75,36 +75,36 @@ license: mit
75
 
76
  This repository includes the following examples:
77
 
78
- ### High-Speed Fine-tuning using Unsloth
79
- - High-speed fine-tuning implementation for Llama-3.2-1B/3B models.
80
  - → See [`Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md`](sandbox/Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md) for details.
81
- - → [Use this to convert from Markdown to Notebook format](https://huggingface.co/spaces/MakiAi/JupytextWebUI)
82
  - [📒Notebook here](https://colab.research.google.com/drive/1AjtWF2vOEwzIoCMmlQfSTYCVgy4Y78Wi?usp=sharing)
83
 
84
- ### Efficient Model Operation using Ollama and LiteLLM
85
- - Setup and operation guide for Google Colab.
86
  - → See [`efficient-ollama-colab-setup-with-litellm-guide.md`](sandbox/efficient-ollama-colab-setup-with-litellm-guide.md) for details.
87
  - [📒Notebook here](https://colab.research.google.com/drive/1buTPds1Go1NbZOLlpG94VG22GyK-F4GW?usp=sharing)
88
 
89
  ### Q&A Dataset Generation from Wikipedia Data (Sentence Pool QA Method)
90
  - High-quality Q&A dataset generation using the sentence pool QA method.
91
- - → A new dataset creation method that generates Q&A pairs while preserving context by pooling sentence chunks delimited by periods.
92
- - → Chunk size is flexibly adjustable (default 200 characters) allowing generation of Q&A pairs with optimal context range depending on the application.
93
  - → See [`wikipedia-qa-dataset-generator.md`](sandbox/wikipedia-qa-dataset-generator.md) for details.
94
  - [📒Notebook here](https://colab.research.google.com/drive/1mmK5vxUzjk3lI6OnEPrQqyjSzqsEoXpk?usp=sharing)
95
 
96
  ### Context-Aware Reflexive QA Generation System
97
  - Q&A dataset generation with reflexive quality improvement.
98
- - → A new method that automatically evaluates the quality of generated Q&A pairs and iteratively improves them.
99
  - → Quantifies factuality, question quality, and answer completeness for evaluation.
100
- - → Uses contextual information for accurate question generation and answer consistency checks.
101
  - → See [`context_aware_Reflexive_qa_generator_V2.md`](sandbox/context_aware_Reflexive_qa_generator_V2.md) for details.
102
  - [📒Notebook here](https://colab.research.google.com/drive/1OYdgAuXHbl-0LUJgkLl_VqknaAEmAm0S?usp=sharing)
103
 
104
  ### LLM Evaluation System (LLMs as a Judge)
105
- - Advanced quality evaluation system utilizing LLMs as evaluators.
106
- - → Automatically evaluates questions, model answers, and LLM answers on a 4-level scale.
107
- - → Robust design with error handling and retry functionality.
108
  - → Generates detailed evaluation reports in CSV and HTML formats.
109
  - → See [`LLMs_as_a_Judge_TOHO_V2.md`](sandbox/LLMs_as_a_Judge_TOHO_V2.md) for details.
110
  - [📒Notebook here](https://colab.research.google.com/drive/1Zjw3sOMa2v5RFD8dFfxMZ4NDGFoQOL7s?usp=sharing)
@@ -121,8 +121,8 @@ cd Llama-finetune-sandbox
121
  ## 📝 Adding Examples
122
 
123
  1. Add new implementations to the `sandbox/` directory.
124
- 2. Add necessary settings and utilities to `utils/` (Removed as it doesn't currently exist).
125
- 3. Update documentation and tests (Removed as it doesn't currently exist).
126
  4. Create a pull request.
127
 
128
  ## 🤝 Contributions
@@ -130,13 +130,13 @@ cd Llama-finetune-sandbox
130
  - Implementation of new fine-tuning methods
131
  - Bug fixes and feature improvements
132
  - Documentation improvements
133
- - Adding usage examples
134
 
135
  ## 📚 References
136
 
137
- - [HuggingFace PEFT Documentation](https://huggingface.co/docs/peft)
138
- - [About Llama Models](https://github.com/facebookresearch/llama)
139
- - [Fine-tuning Best Practices](https://github.com/Sunwood-ai-labs/Llama-finetune-sandbox/wiki) (Removed as it doesn't currently exist)
140
 
141
  ## 📄 License
142
 
 
31
  </p>
32
 
33
  <h2 align="center">
34
+ Llama Model Fine-tuning Experimentation Environment
35
  </h2>
36
 
37
  <p align="center">
 
44
 
45
  ## 🚀 Project Overview
46
 
47
+ **Llama-finetune-sandbox** provides an experimental environment for learning and verifying the fine-tuning of Llama models. You can try various fine-tuning methods, customize models, and evaluate performance. It caters to a wide range of users, from beginners to researchers. Version 0.5.0 includes updated documentation and the addition of a context-aware reflexive QA generation system. This system generates high-quality Q&A datasets from Wikipedia data, leveraging LLMs to iteratively improve the quality of questions and answers, resulting in a more accurate dataset.
48
 
49
 
50
+ ## ✨ Key Features
51
 
52
+ 1. **Diverse Fine-tuning Methods:**
53
  - LoRA (Low-Rank Adaptation)
54
  - QLoRA (Quantized LoRA)
55
 
56
+ 2. **Flexible Model Configuration:**
57
  - Customizable maximum sequence length
58
  - Various quantization options
59
  - Multiple attention mechanisms
60
 
61
+ 3. **Well-equipped Experimentation Environment:**
62
  - Optimized memory usage
63
  - Visualization of experimental results
64
 
65
  4. **Context-Aware Reflexive QA Generation System:**
66
  - Generates high-quality Q&A datasets from Wikipedia data.
67
  - Uses LLMs to automatically generate context-aware questions and answers, evaluate quality, and iteratively improve them.
68
+ - Employs a reflexive approach, quantifying factuality, question quality, and answer completeness for iterative improvement.
69
  - Provides comprehensive code and explanations covering environment setup, model selection, data preprocessing, Q&A pair generation, quality evaluation, and the improvement process.
70
+ - Utilizes libraries such as `litellm`, `wikipedia`, and `transformers`.
71
  - Generated Q&A pairs are saved in JSON format and can be easily uploaded to the Hugging Face Hub.
72
 
73
 
 
75
 
76
  This repository includes the following examples:
77
 
78
+ ### Fast Fine-tuning using Unsloth
79
+ - Implementation of fast fine-tuning for Llama-3.2-1B/3B models.
80
  - → See [`Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md`](sandbox/Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md) for details.
81
+ - → [Use this to convert from markdown to notebook format](https://huggingface.co/spaces/MakiAi/JupytextWebUI)
82
  - [📒Notebook here](https://colab.research.google.com/drive/1AjtWF2vOEwzIoCMmlQfSTYCVgy4Y78Wi?usp=sharing)
83
 
84
+ ### Efficient Model Deployment using Ollama and LiteLLM
85
+ - Setup and deployment guide on Google Colab.
86
  - → See [`efficient-ollama-colab-setup-with-litellm-guide.md`](sandbox/efficient-ollama-colab-setup-with-litellm-guide.md) for details.
87
  - [📒Notebook here](https://colab.research.google.com/drive/1buTPds1Go1NbZOLlpG94VG22GyK-F4GW?usp=sharing)
88
 
89
  ### Q&A Dataset Generation from Wikipedia Data (Sentence Pool QA Method)
90
  - High-quality Q&A dataset generation using the sentence pool QA method.
91
+ - → A new dataset creation method that generates Q&A pairs while preserving context by pooling sentence segments delimited by punctuation.
92
+ - → Chunk size is flexibly adjustable (default 200 characters) to generate Q&A pairs with an optimal context range depending on the application.
93
  - → See [`wikipedia-qa-dataset-generator.md`](sandbox/wikipedia-qa-dataset-generator.md) for details.
94
  - [📒Notebook here](https://colab.research.google.com/drive/1mmK5vxUzjk3lI6OnEPrQqyjSzqsEoXpk?usp=sharing)
95
 
96
  ### Context-Aware Reflexive QA Generation System
97
  - Q&A dataset generation with reflexive quality improvement.
98
+ - → Automatically evaluates the quality of generated Q&A pairs and iteratively improves them.
99
  - → Quantifies factuality, question quality, and answer completeness for evaluation.
100
+ - → Generates high-precision questions and performs consistency checks on answers using contextual information.
101
  - → See [`context_aware_Reflexive_qa_generator_V2.md`](sandbox/context_aware_Reflexive_qa_generator_V2.md) for details.
102
  - [📒Notebook here](https://colab.research.google.com/drive/1OYdgAuXHbl-0LUJgkLl_VqknaAEmAm0S?usp=sharing)
103
 
104
  ### LLM Evaluation System (LLMs as a Judge)
105
+ - Advanced quality evaluation system using LLMs as evaluators.
106
+ - → Automatically evaluates questions, model answers, and LLM responses on a four-level scale.
107
+ - → Robust design with error handling and retry functions.
108
  - → Generates detailed evaluation reports in CSV and HTML formats.
109
  - → See [`LLMs_as_a_Judge_TOHO_V2.md`](sandbox/LLMs_as_a_Judge_TOHO_V2.md) for details.
110
  - [📒Notebook here](https://colab.research.google.com/drive/1Zjw3sOMa2v5RFD8dFfxMZ4NDGFoQOL7s?usp=sharing)
 
121
  ## 📝 Adding Examples
122
 
123
  1. Add new implementations to the `sandbox/` directory.
124
+ 2. Add necessary settings and utilities to `utils/` (This section was removed as `utils/` directory appears not to exist).
125
+ 3. Update documentation and tests (This section was removed as there's no mention of existing tests).
126
  4. Create a pull request.
127
 
128
  ## 🤝 Contributions
 
130
  - Implementation of new fine-tuning methods
131
  - Bug fixes and feature improvements
132
  - Documentation improvements
133
+ - Addition of usage examples
134
 
135
  ## 📚 References
136
 
137
+ - [HuggingFace PEFT documentation](https://huggingface.co/docs/peft)
138
+ - [About Llama models](https://github.com/facebookresearch/llama)
139
+ - [Fine-tuning best practices](https://github.com/Sunwood-ai-labs/Llama-finetune-sandbox/wiki) (This section was removed as the wiki page appears not to exist).
140
 
141
  ## 📄 License
142