iris-s-coon commited on
Commit
a8f7492
·
1 Parent(s): 9904e57

📖 [docs] 英語READMEの更新

Browse files
Files changed (1) hide show
  1. docs/README.en.md +38 -12
docs/README.en.md CHANGED
@@ -44,41 +44,67 @@ license: mit
44
 
45
  ## 🚀 Project Overview
46
 
47
- **Llama-finetune-sandbox** provides an experimental environment for learning and verifying Llama model fine-tuning. You can try various fine-tuning methods, customize models, and evaluate performance. It caters to a wide range of users, from beginners to researchers. Version 0.1.0 includes a repository name change, a significantly updated README, and the addition of a Llama model fine-tuning tutorial.
48
 
49
- ## ✨ Main Features
50
 
51
- 1. **Diverse Fine-tuning Methods**:
52
  - LoRA (Low-Rank Adaptation)
53
  - QLoRA (Quantized LoRA)
54
  - ⚠️~Full Fine-tuning~
55
  - ⚠️~Parameter-Efficient Fine-tuning (PEFT)~
56
 
57
- 2. **Flexible Model Settings**:
58
  - Customizable maximum sequence length
59
  - Various quantization options
60
  - Multiple attention mechanisms
61
 
62
- 3. **Experimental Environment Setup**:
63
  - Performance evaluation tools
64
  - Memory usage optimization
65
  - Visualization of experimental results
66
 
67
- ## 🔧 How to Use
68
 
69
- This repository includes a tutorial on high-speed fine-tuning using the Unsloth library (`sandbox/Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md`). This tutorial provides a step-by-step explanation of the fine-tuning process with numerous code examples. The tutorial is written in Japanese. [Use this to convert from Markdown to Notebook format](https://huggingface.co/spaces/MakiAi/JupytextWebUI). A [Google Colab notebook](https://colab.research.google.com/drive/1AjtWF2vOEwzIoCMmlQfSTYCVgy4Y78Wi?usp=sharing) is also available.
70
 
 
71
 
72
- ## 📦 Installation Instructions
 
 
 
 
73
 
74
- Information not available.
75
 
 
76
 
77
- ## 🆕 Latest News
 
 
 
 
78
 
79
- - 🎉 Added Llama model fine-tuning tutorial.
80
 
 
 
 
 
81
 
82
- ## 📄 License
 
 
 
 
 
 
 
 
 
 
 
 
 
83
 
84
  This project is licensed under the MIT License.
 
44
 
45
  ## 🚀 Project Overview
46
 
47
+ **Llama-finetune-sandbox** is an experimental environment for learning and verifying Llama model fine-tuning. You can try various fine-tuning methods, customize models, and evaluate performance. It caters to a wide range of users, from beginners to researchers. Version 0.1.0 includes a repository name change, significantly updated README, and added a Llama model fine-tuning tutorial.
48
 
49
+ ## ✨ Key Features
50
 
51
+ 1. **Various Fine-tuning Methods:**
52
  - LoRA (Low-Rank Adaptation)
53
  - QLoRA (Quantized LoRA)
54
  - ⚠️~Full Fine-tuning~
55
  - ⚠️~Parameter-Efficient Fine-tuning (PEFT)~
56
 
57
+ 2. **Flexible Model Settings:**
58
  - Customizable maximum sequence length
59
  - Various quantization options
60
  - Multiple attention mechanisms
61
 
62
+ 3. **Experimental Environment Setup:**
63
  - Performance evaluation tools
64
  - Memory usage optimization
65
  - Visualization of experimental results
66
 
 
67
 
68
+ ## 📚 Implementation Examples
69
 
70
+ This repository includes the following implementation examples:
71
 
72
+ 1. **High-speed fine-tuning using Unsloth:**
73
+ - Implementation of high-speed fine-tuning for Llama-3.2-1B/3B models.
74
+ - → See [`Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md`](sandbox/Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md) for details.
75
+ - → [Use this to convert from Markdown to Notebook format](https://huggingface.co/spaces/MakiAi/JupytextWebUI)
76
+ - [📒Notebook here](https://colab.research.google.com/drive/1AjtWF2vOEwzIoCMmlQfSTYCVgy4Y78Wi?usp=sharing)
77
 
78
+ 2. Other implementation examples will be added periodically.
79
 
80
+ ## 🛠️ Environment Setup
81
 
82
+ 1. Clone the repository:
83
+ ```bash
84
+ git clone https://github.com/Sunwood-ai-labs/Llama-finetune-sandbox.git
85
+ cd Llama-finetune-sandbox
86
+ ```
87
 
88
+ ## 📝 Adding Example Experiments
89
 
90
+ 1. Add new implementations to the `examples/` directory.
91
+ 2. Add necessary settings and utilities to `utils/`.
92
+ 3. Update documentation and tests.
93
+ 4. Create a pull request.
94
 
95
+ ## 🤝 Contributions
96
+
97
+ - Implementation of new fine-tuning methods
98
+ - Bug fixes and feature improvements
99
+ - Documentation improvements
100
+ - Addition of usage examples
101
+
102
+ ## 📚 References
103
+
104
+ - [HuggingFace PEFT Documentation](https://huggingface.co/docs/peft)
105
+ - [About Llama Models](https://github.com/facebookresearch/llama)
106
+ - [Fine-tuning Best Practices](https://github.com/Sunwood-ai-labs/Llama-finetune-sandbox/wiki)
107
+
108
+ ## ⚖️ License
109
 
110
  This project is licensed under the MIT License.