Spaces:
Sleeping
Sleeping
[email protected]
commited on
Merge pull request #14 from Sunwood-ai-labs/translate-readme-11573465431
Browse files- docs/README.en.md +20 -19
docs/README.en.md
CHANGED
@@ -44,7 +44,7 @@ license: mit
|
|
44 |
|
45 |
## 🚀 Project Overview
|
46 |
|
47 |
-
**Llama-finetune-sandbox** provides an experimental environment for learning and
|
48 |
|
49 |
|
50 |
## ✨ Main Features
|
@@ -59,35 +59,36 @@ license: mit
|
|
59 |
- Multiple attention mechanisms
|
60 |
|
61 |
3. **Experiment Environment Setup**:
|
62 |
-
- Performance evaluation tools
|
63 |
- Memory usage optimization
|
64 |
-
-
|
65 |
|
66 |
-
## 📚 Implementation Examples
|
67 |
|
68 |
-
|
|
|
|
|
69 |
|
70 |
### High-Speed Fine-tuning using Unsloth
|
71 |
-
- Implementation of high-speed fine-tuning for Llama-3.2-1B/3B models
|
72 |
-
- → See [`Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md`](sandbox/Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md) for details.
|
73 |
-
- →
|
74 |
- [📒Notebook here](https://colab.research.google.com/drive/1AjtWF2vOEwzIoCMmlQfSTYCVgy4Y78Wi?usp=sharing)
|
75 |
|
76 |
-
### Efficient Model
|
77 |
-
- Setup and
|
78 |
- → See [`efficient-ollama-colab-setup-with-litellm-guide.md`](sandbox/efficient-ollama-colab-setup-with-litellm-guide.md) for details.
|
79 |
- [📒Notebook here](https://colab.research.google.com/drive/1buTPds1Go1NbZOLlpG94VG22GyK-F4GW?usp=sharing)
|
80 |
|
81 |
### LLM Evaluation System (LLMs as a Judge)
|
82 |
-
- Implementation of a system for automatically evaluating the quality of LLM responses.
|
83 |
- Uses LLMs as evaluators to assess the responses of other LLMs (LLMs as a Judge method).
|
84 |
-
- Quantitative quality assessment and feedback generation using a 4-
|
85 |
- → See [`llm-evaluator-notebook.md`](sandbox/llm-evaluator-notebook.md) for details.
|
86 |
- Efficient evaluation system using Gemini and LiteLLM.
|
87 |
- [📒Notebook here](https://colab.research.google.com/drive/1haO44IeseQ3OL92HlsINAgBI_yA1fxcJ?usp=sharing)
|
88 |
|
89 |
|
90 |
-
##
|
91 |
|
92 |
1. Clone the repository:
|
93 |
```bash
|
@@ -95,19 +96,19 @@ git clone https://github.com/Sunwood-ai-labs/Llama-finetune-sandbox.git
|
|
95 |
cd Llama-finetune-sandbox
|
96 |
```
|
97 |
|
98 |
-
## 📝 Adding
|
99 |
|
100 |
1. Add new implementations to the `examples/` directory.
|
101 |
-
2. Add necessary
|
102 |
3. Update documentation and tests.
|
103 |
4. Create a pull request.
|
104 |
|
105 |
## 🤝 Contributions
|
106 |
|
107 |
-
- Implementation of new fine-tuning methods
|
108 |
-
- Bug fixes and feature improvements
|
109 |
-
- Documentation improvements
|
110 |
-
-
|
111 |
|
112 |
## 📚 References
|
113 |
|
|
|
44 |
|
45 |
## 🚀 Project Overview
|
46 |
|
47 |
+
**Llama-finetune-sandbox** provides an experimental environment for learning and validating Llama model fine-tuning. You can try various fine-tuning methods, customize models, and evaluate performance. It caters to a wide range of users, from beginners to researchers. Version 0.3.0 included improved documentation and an updated English README.
|
48 |
|
49 |
|
50 |
## ✨ Main Features
|
|
|
59 |
- Multiple attention mechanisms
|
60 |
|
61 |
3. **Experiment Environment Setup**:
|
62 |
+
- Performance evaluation tools (added in v0.3.0, later removed)
|
63 |
- Memory usage optimization
|
64 |
+
- Experiment result visualization
|
65 |
|
|
|
66 |
|
67 |
+
## 📚 Examples
|
68 |
+
|
69 |
+
This repository includes the following examples:
|
70 |
|
71 |
### High-Speed Fine-tuning using Unsloth
|
72 |
+
- Implementation of high-speed fine-tuning for Llama-3.2-1B/3B models.
|
73 |
+
- → See [`Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md`](sandbox/Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md) for details. (Japanese)
|
74 |
+
- → Use [this tool](https://huggingface.co/spaces/MakiAi/JupytextWebUI) to convert from markdown to notebook format.
|
75 |
- [📒Notebook here](https://colab.research.google.com/drive/1AjtWF2vOEwzIoCMmlQfSTYCVgy4Y78Wi?usp=sharing)
|
76 |
|
77 |
+
### Efficient Model Deployment using Ollama and LiteLLM
|
78 |
+
- Setup and deployment guide for Google Colab.
|
79 |
- → See [`efficient-ollama-colab-setup-with-litellm-guide.md`](sandbox/efficient-ollama-colab-setup-with-litellm-guide.md) for details.
|
80 |
- [📒Notebook here](https://colab.research.google.com/drive/1buTPds1Go1NbZOLlpG94VG22GyK-F4GW?usp=sharing)
|
81 |
|
82 |
### LLM Evaluation System (LLMs as a Judge)
|
83 |
+
- Implementation of a system for automatically evaluating the quality of LLM responses (added in v0.3.0, later removed).
|
84 |
- Uses LLMs as evaluators to assess the responses of other LLMs (LLMs as a Judge method).
|
85 |
+
- Quantitative quality assessment and feedback generation using a 4-point rating scale.
|
86 |
- → See [`llm-evaluator-notebook.md`](sandbox/llm-evaluator-notebook.md) for details.
|
87 |
- Efficient evaluation system using Gemini and LiteLLM.
|
88 |
- [📒Notebook here](https://colab.research.google.com/drive/1haO44IeseQ3OL92HlsINAgBI_yA1fxcJ?usp=sharing)
|
89 |
|
90 |
|
91 |
+
## 🔧 Setup
|
92 |
|
93 |
1. Clone the repository:
|
94 |
```bash
|
|
|
96 |
cd Llama-finetune-sandbox
|
97 |
```
|
98 |
|
99 |
+
## 📝 Adding Examples
|
100 |
|
101 |
1. Add new implementations to the `examples/` directory.
|
102 |
+
2. Add necessary configurations and utilities to `utils/`.
|
103 |
3. Update documentation and tests.
|
104 |
4. Create a pull request.
|
105 |
|
106 |
## 🤝 Contributions
|
107 |
|
108 |
+
- Implementation of new fine-tuning methods.
|
109 |
+
- Bug fixes and feature improvements.
|
110 |
+
- Documentation improvements.
|
111 |
+
- Adding usage examples.
|
112 |
|
113 |
## 📚 References
|
114 |
|