Spaces:
Sleeping
Sleeping
iris-s-coon
commited on
Commit
·
cdb6ab8
1
Parent(s):
729aeb2
📖 [docs] 英語READMEの更新
Browse files- docs/README.en.md +35 -35
docs/README.en.md
CHANGED
@@ -31,7 +31,7 @@ license: mit
|
|
31 |
</p>
|
32 |
|
33 |
<h2 align="center">
|
34 |
-
Llama
|
35 |
</h2>
|
36 |
|
37 |
<p align="center">
|
@@ -44,42 +44,42 @@ license: mit
|
|
44 |
|
45 |
## 🚀 Project Overview
|
46 |
|
47 |
-
**Llama-finetune-sandbox** provides an experimental environment for learning and verifying Llama model fine-tuning. You can try various fine-tuning methods, customize models, and evaluate performance. It caters to a wide range of users, from beginners to researchers. Version 0.
|
48 |
|
49 |
|
50 |
-
## ✨
|
51 |
|
52 |
-
1. **
|
53 |
- LoRA (Low-Rank Adaptation)
|
54 |
- QLoRA (Quantized LoRA)
|
55 |
|
56 |
-
2. **Flexible Model
|
57 |
- Customizable maximum sequence length
|
58 |
- Various quantization options
|
59 |
- Multiple attention mechanisms
|
60 |
|
61 |
-
3. **Experiment Environment Setup
|
62 |
-
-
|
63 |
- Visualization of experimental results
|
64 |
|
65 |
-
4. **Context-Aware
|
66 |
- Generates high-quality Q&A datasets from Wikipedia data.
|
67 |
-
- Uses LLMs to generate context-aware questions and answers,
|
68 |
-
- Employs a
|
69 |
-
- Provides
|
70 |
- Uses libraries such as `litellm`, `wikipedia`, and `transformers`.
|
71 |
- Generated Q&A pairs are saved in JSON format and can be easily uploaded to the Hugging Face Hub.
|
72 |
|
73 |
-
5. **LLM Evaluation System
|
74 |
- Automatically evaluates the quality of LLM responses.
|
75 |
-
- Evaluates questions, model answers, and LLM responses on a 4-
|
76 |
- Features error handling, retry functionality, logging, customizable evaluation criteria, and report generation in CSV and HTML formats.
|
77 |
-
- Also includes functionality for uploading to the
|
78 |
|
79 |
|
80 |
## 🔧 Usage
|
81 |
|
82 |
-
|
83 |
|
84 |
|
85 |
## 📦 Installation Instructions
|
@@ -87,25 +87,25 @@ Please refer to the notebooks in this repository.
|
|
87 |
Refer to `requirements.txt` and install the necessary packages.
|
88 |
|
89 |
|
90 |
-
## 📚 Examples
|
91 |
|
92 |
-
This repository includes the following examples:
|
93 |
|
94 |
-
###
|
95 |
-
-
|
96 |
- → See [`Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md`](sandbox/Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md) for details.
|
97 |
-
- → [Use this to convert from
|
98 |
- [📒Notebook here](https://colab.research.google.com/drive/1AjtWF2vOEwzIoCMmlQfSTYCVgy4Y78Wi?usp=sharing)
|
99 |
|
100 |
-
###
|
101 |
-
-
|
102 |
- → See [`Unsloth_inference_llama3-2.md`](sandbox/Unsloth_inference_llama3-2.md) for details.
|
103 |
-
- → Implementation of efficient inference processing for Llama-3.2
|
104 |
- [📒Notebook here](https://colab.research.google.com/drive/1FkAYiX2fbGPTRUopYw39Qt5UE2tWJRpa?usp=sharing)
|
105 |
|
106 |
-
-
|
107 |
- → See [`Unsloth_inference_llm_jp.md`](sandbox/Unsloth_inference_llm_jp.md) for details.
|
108 |
-
- → Implementation and performance optimization of
|
109 |
- [📒Notebook here](https://colab.research.google.com/drive/1lbMKv7NzXQ1ynCg7DGQ6PcCFPK-zlSEG?usp=sharing)
|
110 |
|
111 |
### Efficient Model Operation using Ollama and LiteLLM
|
@@ -114,33 +114,33 @@ This repository includes the following examples:
|
|
114 |
- [📒Notebook here](https://colab.research.google.com/drive/1buTPds1Go1NbZOLlpG94VG22GyK-F4GW?usp=sharing)
|
115 |
|
116 |
### Q&A Dataset Generation from Wikipedia Data (Sentence Pool QA Method)
|
117 |
-
- High-quality Q&A dataset generation using the
|
118 |
-
- → A new dataset creation method that generates Q&A pairs while
|
119 |
-
- → Chunk size
|
120 |
- → See [`wikipedia-qa-dataset-generator.md`](sandbox/wikipedia-qa-dataset-generator.md) for details.
|
121 |
- [📒Notebook here](https://colab.research.google.com/drive/1mmK5vxUzjk3lI6OnEPrQqyjSzqsEoXpk?usp=sharing)
|
122 |
|
123 |
-
### Context-Aware
|
124 |
-
- Q&A dataset generation with
|
125 |
- → A new method that automatically evaluates the quality of generated Q&A pairs and iteratively improves them.
|
126 |
- → Quantifies factuality, question quality, and answer completeness for evaluation.
|
127 |
-
- →
|
128 |
- → See [`context_aware_Reflexive_qa_generator_V2.md`](sandbox/context_aware_Reflexive_qa_generator_V2.md) for details.
|
129 |
- [📒Notebook here](https://colab.research.google.com/drive/1OYdgAuXHbl-0LUJgkLl_VqknaAEmAm0S?usp=sharing)
|
130 |
|
131 |
### LLM Evaluation System (LLMs as a Judge)
|
132 |
- Advanced quality evaluation system utilizing LLMs as evaluators
|
133 |
-
- → Automatically evaluates questions, model answers, and LLM responses on a 4-
|
134 |
- → Robust design with error handling and retry functionality.
|
135 |
- → Generates detailed evaluation reports in CSV and HTML formats.
|
136 |
- → See [`LLMs_as_a_Judge_TOHO_V2.md`](sandbox/LLMs_as_a_Judge_TOHO_V2.md) for details.
|
137 |
- [📒Notebook here](https://colab.research.google.com/drive/1Zjw3sOMa2v5RFD8dFfxMZ4NDGFoQOL7s?usp=sharing)
|
138 |
|
139 |
|
140 |
-
## 🆕
|
141 |
|
142 |
-
- **
|
143 |
-
-
|
144 |
|
145 |
|
146 |
## 🤝 Contributions
|
|
|
31 |
</p>
|
32 |
|
33 |
<h2 align="center">
|
34 |
+
Llama Model Fine-tuning Experiment Environment
|
35 |
</h2>
|
36 |
|
37 |
<p align="center">
|
|
|
44 |
|
45 |
## 🚀 Project Overview
|
46 |
|
47 |
+
**Llama-finetune-sandbox** provides an experimental environment for learning and verifying Llama model fine-tuning. You can try various fine-tuning methods, customize models, and evaluate performance. It caters to a wide range of users, from beginners to researchers. Version 0.7.0 includes updated documentation and the addition of a guide for implementing high-speed inference using Unsloth.
|
48 |
|
49 |
|
50 |
+
## ✨ Key Features
|
51 |
|
52 |
+
1. **Diverse Fine-tuning Methods**:
|
53 |
- LoRA (Low-Rank Adaptation)
|
54 |
- QLoRA (Quantized LoRA)
|
55 |
|
56 |
+
2. **Flexible Model Configuration**:
|
57 |
- Customizable maximum sequence length
|
58 |
- Various quantization options
|
59 |
- Multiple attention mechanisms
|
60 |
|
61 |
+
3. **Experiment Environment Setup**:
|
62 |
+
- Memory usage optimization
|
63 |
- Visualization of experimental results
|
64 |
|
65 |
+
4. **Context-Aware Reflexive QA Generation System**:
|
66 |
- Generates high-quality Q&A datasets from Wikipedia data.
|
67 |
+
- Uses LLMs to automatically generate context-aware questions and answers, evaluate quality, and iteratively improve them.
|
68 |
+
- Employs a reflexive approach, quantifying factuality, question quality, and answer completeness to evaluate and iteratively improve the generated Q&A pairs.
|
69 |
+
- Provides code and explanations covering environment setup, model selection, data preprocessing, Q&A pair generation, quality evaluation, and the improvement process.
|
70 |
- Uses libraries such as `litellm`, `wikipedia`, and `transformers`.
|
71 |
- Generated Q&A pairs are saved in JSON format and can be easily uploaded to the Hugging Face Hub.
|
72 |
|
73 |
+
5. **LLM Evaluation System**:
|
74 |
- Automatically evaluates the quality of LLM responses.
|
75 |
+
- Evaluates questions, model answers, and LLM responses on a 4-point scale, generating detailed evaluation reports.
|
76 |
- Features error handling, retry functionality, logging, customizable evaluation criteria, and report generation in CSV and HTML formats.
|
77 |
+
- Also includes functionality for uploading to the Hugging Face Hub.
|
78 |
|
79 |
|
80 |
## 🔧 Usage
|
81 |
|
82 |
+
Refer to the notebooks in this repository.
|
83 |
|
84 |
|
85 |
## 📦 Installation Instructions
|
|
|
87 |
Refer to `requirements.txt` and install the necessary packages.
|
88 |
|
89 |
|
90 |
+
## 📚 Implementation Examples
|
91 |
|
92 |
+
This repository includes the following implementation examples:
|
93 |
|
94 |
+
### High-Speed Fine-tuning using Unsloth
|
95 |
+
- High-speed fine-tuning implementation for Llama-3.2-1B/3B models
|
96 |
- → See [`Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md`](sandbox/Llama_3_2_1B+3B_Conversational_+_2x_faster_finetuning_JP.md) for details.
|
97 |
+
- → [Use this to convert from Markdown to Notebook format](https://huggingface.co/spaces/MakiAi/JupytextWebUI)
|
98 |
- [📒Notebook here](https://colab.research.google.com/drive/1AjtWF2vOEwzIoCMmlQfSTYCVgy4Y78Wi?usp=sharing)
|
99 |
|
100 |
+
### High-Speed Inference using Unsloth
|
101 |
+
- High-speed inference implementation for Llama-3.2 models
|
102 |
- → See [`Unsloth_inference_llama3-2.md`](sandbox/Unsloth_inference_llama3-2.md) for details.
|
103 |
+
- → Implementation of efficient inference processing for the Llama-3.2 model using Unsloth
|
104 |
- [📒Notebook here](https://colab.research.google.com/drive/1FkAYiX2fbGPTRUopYw39Qt5UE2tWJRpa?usp=sharing)
|
105 |
|
106 |
+
- High-speed inference implementation for LLM-JP models
|
107 |
- → See [`Unsloth_inference_llm_jp.md`](sandbox/Unsloth_inference_llm_jp.md) for details.
|
108 |
+
- → Implementation and performance optimization of high-speed inference processing for Japanese LLMs
|
109 |
- [📒Notebook here](https://colab.research.google.com/drive/1lbMKv7NzXQ1ynCg7DGQ6PcCFPK-zlSEG?usp=sharing)
|
110 |
|
111 |
### Efficient Model Operation using Ollama and LiteLLM
|
|
|
114 |
- [📒Notebook here](https://colab.research.google.com/drive/1buTPds1Go1NbZOLlpG94VG22GyK-F4GW?usp=sharing)
|
115 |
|
116 |
### Q&A Dataset Generation from Wikipedia Data (Sentence Pool QA Method)
|
117 |
+
- High-quality Q&A dataset generation using the sentence pool QA method
|
118 |
+
- → A new dataset creation method that generates Q&A pairs while maintaining context by pooling sentences separated by punctuation marks.
|
119 |
+
- → Chunk size is flexibly adjustable (default 200 characters) to generate Q&A pairs with optimal context range depending on the application.
|
120 |
- → See [`wikipedia-qa-dataset-generator.md`](sandbox/wikipedia-qa-dataset-generator.md) for details.
|
121 |
- [📒Notebook here](https://colab.research.google.com/drive/1mmK5vxUzjk3lI6OnEPrQqyjSzqsEoXpk?usp=sharing)
|
122 |
|
123 |
+
### Context-Aware Reflexive QA Generation System
|
124 |
+
- Q&A dataset generation with reflexive quality improvement
|
125 |
- → A new method that automatically evaluates the quality of generated Q&A pairs and iteratively improves them.
|
126 |
- → Quantifies factuality, question quality, and answer completeness for evaluation.
|
127 |
+
- → Generates highly accurate questions and checks the consistency of answers using contextual information.
|
128 |
- → See [`context_aware_Reflexive_qa_generator_V2.md`](sandbox/context_aware_Reflexive_qa_generator_V2.md) for details.
|
129 |
- [📒Notebook here](https://colab.research.google.com/drive/1OYdgAuXHbl-0LUJgkLl_VqknaAEmAm0S?usp=sharing)
|
130 |
|
131 |
### LLM Evaluation System (LLMs as a Judge)
|
132 |
- Advanced quality evaluation system utilizing LLMs as evaluators
|
133 |
+
- → Automatically evaluates questions, model answers, and LLM responses on a 4-point scale.
|
134 |
- → Robust design with error handling and retry functionality.
|
135 |
- → Generates detailed evaluation reports in CSV and HTML formats.
|
136 |
- → See [`LLMs_as_a_Judge_TOHO_V2.md`](sandbox/LLMs_as_a_Judge_TOHO_V2.md) for details.
|
137 |
- [📒Notebook here](https://colab.research.google.com/drive/1Zjw3sOMa2v5RFD8dFfxMZ4NDGFoQOL7s?usp=sharing)
|
138 |
|
139 |
|
140 |
+
## 🆕 What's New (v0.7.0)
|
141 |
|
142 |
+
- **Addition of a guide for high-speed inference implementation using Unsloth**: Added information on high-speed inference implementation for Llama-3.2 and LLM-JP models, how to use each model, and links to Colab notebooks.
|
143 |
+
- Updated documentation
|
144 |
|
145 |
|
146 |
## 🤝 Contributions
|